Description: A restriction of the identity relation is a subset of the reflexive closure of a relation. (Contributed by RP, 22-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvrcllb0da.rel | ⊢ ( 𝜑 → Rel 𝑅 ) | |
| fvrcllb0da.r | ⊢ ( 𝜑 → 𝑅 ∈ V ) | ||
| Assertion | fvrcllb0da | ⊢ ( 𝜑 → ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( r* ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvrcllb0da.rel | ⊢ ( 𝜑 → Rel 𝑅 ) | |
| 2 | fvrcllb0da.r | ⊢ ( 𝜑 → 𝑅 ∈ V ) | |
| 3 | dfrcl4 | ⊢ r* = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ { 0 , 1 } ( 𝑟 ↑𝑟 𝑛 ) ) | |
| 4 | prex | ⊢ { 0 , 1 } ∈ V | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → { 0 , 1 } ∈ V ) |
| 6 | c0ex | ⊢ 0 ∈ V | |
| 7 | 6 | prid1 | ⊢ 0 ∈ { 0 , 1 } |
| 8 | 7 | a1i | ⊢ ( 𝜑 → 0 ∈ { 0 , 1 } ) |
| 9 | 3 2 5 1 8 | fvmptiunrelexplb0da | ⊢ ( 𝜑 → ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( r* ‘ 𝑅 ) ) |