Description: A restriction of the identity relation is a subset of the reflexive closure of a relation. (Contributed by RP, 22-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fvrcllb0da.rel | ⊢ ( 𝜑 → Rel 𝑅 ) | |
fvrcllb0da.r | ⊢ ( 𝜑 → 𝑅 ∈ V ) | ||
Assertion | fvrcllb0da | ⊢ ( 𝜑 → ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( r* ‘ 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvrcllb0da.rel | ⊢ ( 𝜑 → Rel 𝑅 ) | |
2 | fvrcllb0da.r | ⊢ ( 𝜑 → 𝑅 ∈ V ) | |
3 | dfrcl4 | ⊢ r* = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ { 0 , 1 } ( 𝑟 ↑𝑟 𝑛 ) ) | |
4 | prex | ⊢ { 0 , 1 } ∈ V | |
5 | 4 | a1i | ⊢ ( 𝜑 → { 0 , 1 } ∈ V ) |
6 | c0ex | ⊢ 0 ∈ V | |
7 | 6 | prid1 | ⊢ 0 ∈ { 0 , 1 } |
8 | 7 | a1i | ⊢ ( 𝜑 → 0 ∈ { 0 , 1 } ) |
9 | 3 2 5 1 8 | fvmptiunrelexplb0da | ⊢ ( 𝜑 → ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( r* ‘ 𝑅 ) ) |