Metamath Proof Explorer


Theorem fvrcllb0da

Description: A restriction of the identity relation is a subset of the reflexive closure of a relation. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypotheses fvrcllb0da.rel
|- ( ph -> Rel R )
fvrcllb0da.r
|- ( ph -> R e. _V )
Assertion fvrcllb0da
|- ( ph -> ( _I |` U. U. R ) C_ ( r* ` R ) )

Proof

Step Hyp Ref Expression
1 fvrcllb0da.rel
 |-  ( ph -> Rel R )
2 fvrcllb0da.r
 |-  ( ph -> R e. _V )
3 dfrcl4
 |-  r* = ( r e. _V |-> U_ n e. { 0 , 1 } ( r ^r n ) )
4 prex
 |-  { 0 , 1 } e. _V
5 4 a1i
 |-  ( ph -> { 0 , 1 } e. _V )
6 c0ex
 |-  0 e. _V
7 6 prid1
 |-  0 e. { 0 , 1 }
8 7 a1i
 |-  ( ph -> 0 e. { 0 , 1 } )
9 3 2 5 1 8 fvmptiunrelexplb0da
 |-  ( ph -> ( _I |` U. U. R ) C_ ( r* ` R ) )