Description: A restriction of the identity relation is a subset of the reflexive closure of a relation. (Contributed by RP, 22-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvrcllb0da.rel | |- ( ph -> Rel R ) |
|
| fvrcllb0da.r | |- ( ph -> R e. _V ) |
||
| Assertion | fvrcllb0da | |- ( ph -> ( _I |` U. U. R ) C_ ( r* ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvrcllb0da.rel | |- ( ph -> Rel R ) |
|
| 2 | fvrcllb0da.r | |- ( ph -> R e. _V ) |
|
| 3 | dfrcl4 | |- r* = ( r e. _V |-> U_ n e. { 0 , 1 } ( r ^r n ) ) |
|
| 4 | prex | |- { 0 , 1 } e. _V |
|
| 5 | 4 | a1i | |- ( ph -> { 0 , 1 } e. _V ) |
| 6 | c0ex | |- 0 e. _V |
|
| 7 | 6 | prid1 | |- 0 e. { 0 , 1 } |
| 8 | 7 | a1i | |- ( ph -> 0 e. { 0 , 1 } ) |
| 9 | 3 2 5 1 8 | fvmptiunrelexplb0da | |- ( ph -> ( _I |` U. U. R ) C_ ( r* ` R ) ) |