Metamath Proof Explorer


Theorem fvtp1

Description: The first value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses fvtp1.1 𝐴 ∈ V
fvtp1.4 𝐷 ∈ V
Assertion fvtp1 ( ( 𝐴𝐵𝐴𝐶 ) → ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } ‘ 𝐴 ) = 𝐷 )

Proof

Step Hyp Ref Expression
1 fvtp1.1 𝐴 ∈ V
2 fvtp1.4 𝐷 ∈ V
3 df-tp { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } = ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∪ { ⟨ 𝐶 , 𝐹 ⟩ } )
4 3 fveq1i ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } ‘ 𝐴 ) = ( ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∪ { ⟨ 𝐶 , 𝐹 ⟩ } ) ‘ 𝐴 )
5 necom ( 𝐴𝐶𝐶𝐴 )
6 fvunsn ( 𝐶𝐴 → ( ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∪ { ⟨ 𝐶 , 𝐹 ⟩ } ) ‘ 𝐴 ) = ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ‘ 𝐴 ) )
7 5 6 sylbi ( 𝐴𝐶 → ( ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∪ { ⟨ 𝐶 , 𝐹 ⟩ } ) ‘ 𝐴 ) = ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ‘ 𝐴 ) )
8 1 2 fvpr1 ( 𝐴𝐵 → ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ‘ 𝐴 ) = 𝐷 )
9 7 8 sylan9eqr ( ( 𝐴𝐵𝐴𝐶 ) → ( ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∪ { ⟨ 𝐶 , 𝐹 ⟩ } ) ‘ 𝐴 ) = 𝐷 )
10 4 9 syl5eq ( ( 𝐴𝐵𝐴𝐶 ) → ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } ‘ 𝐴 ) = 𝐷 )