| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funun |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → Fun ( 𝐹 ∪ 𝐺 ) ) |
| 2 |
|
funfv |
⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → ( ( 𝐹 ∪ 𝐺 ) ‘ 𝐴 ) = ∪ ( ( 𝐹 ∪ 𝐺 ) “ { 𝐴 } ) ) |
| 3 |
1 2
|
syl |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ( 𝐹 ∪ 𝐺 ) ‘ 𝐴 ) = ∪ ( ( 𝐹 ∪ 𝐺 ) “ { 𝐴 } ) ) |
| 4 |
|
imaundir |
⊢ ( ( 𝐹 ∪ 𝐺 ) “ { 𝐴 } ) = ( ( 𝐹 “ { 𝐴 } ) ∪ ( 𝐺 “ { 𝐴 } ) ) |
| 5 |
4
|
a1i |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ( 𝐹 ∪ 𝐺 ) “ { 𝐴 } ) = ( ( 𝐹 “ { 𝐴 } ) ∪ ( 𝐺 “ { 𝐴 } ) ) ) |
| 6 |
5
|
unieqd |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ∪ ( ( 𝐹 ∪ 𝐺 ) “ { 𝐴 } ) = ∪ ( ( 𝐹 “ { 𝐴 } ) ∪ ( 𝐺 “ { 𝐴 } ) ) ) |
| 7 |
|
uniun |
⊢ ∪ ( ( 𝐹 “ { 𝐴 } ) ∪ ( 𝐺 “ { 𝐴 } ) ) = ( ∪ ( 𝐹 “ { 𝐴 } ) ∪ ∪ ( 𝐺 “ { 𝐴 } ) ) |
| 8 |
|
funfv |
⊢ ( Fun 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∪ ( 𝐹 “ { 𝐴 } ) ) |
| 9 |
8
|
eqcomd |
⊢ ( Fun 𝐹 → ∪ ( 𝐹 “ { 𝐴 } ) = ( 𝐹 ‘ 𝐴 ) ) |
| 10 |
|
funfv |
⊢ ( Fun 𝐺 → ( 𝐺 ‘ 𝐴 ) = ∪ ( 𝐺 “ { 𝐴 } ) ) |
| 11 |
10
|
eqcomd |
⊢ ( Fun 𝐺 → ∪ ( 𝐺 “ { 𝐴 } ) = ( 𝐺 ‘ 𝐴 ) ) |
| 12 |
9 11
|
anim12i |
⊢ ( ( Fun 𝐹 ∧ Fun 𝐺 ) → ( ∪ ( 𝐹 “ { 𝐴 } ) = ( 𝐹 ‘ 𝐴 ) ∧ ∪ ( 𝐺 “ { 𝐴 } ) = ( 𝐺 ‘ 𝐴 ) ) ) |
| 13 |
12
|
adantr |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ∪ ( 𝐹 “ { 𝐴 } ) = ( 𝐹 ‘ 𝐴 ) ∧ ∪ ( 𝐺 “ { 𝐴 } ) = ( 𝐺 ‘ 𝐴 ) ) ) |
| 14 |
|
uneq12 |
⊢ ( ( ∪ ( 𝐹 “ { 𝐴 } ) = ( 𝐹 ‘ 𝐴 ) ∧ ∪ ( 𝐺 “ { 𝐴 } ) = ( 𝐺 ‘ 𝐴 ) ) → ( ∪ ( 𝐹 “ { 𝐴 } ) ∪ ∪ ( 𝐺 “ { 𝐴 } ) ) = ( ( 𝐹 ‘ 𝐴 ) ∪ ( 𝐺 ‘ 𝐴 ) ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ∪ ( 𝐹 “ { 𝐴 } ) ∪ ∪ ( 𝐺 “ { 𝐴 } ) ) = ( ( 𝐹 ‘ 𝐴 ) ∪ ( 𝐺 ‘ 𝐴 ) ) ) |
| 16 |
7 15
|
eqtrid |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ∪ ( ( 𝐹 “ { 𝐴 } ) ∪ ( 𝐺 “ { 𝐴 } ) ) = ( ( 𝐹 ‘ 𝐴 ) ∪ ( 𝐺 ‘ 𝐴 ) ) ) |
| 17 |
3 6 16
|
3eqtrd |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ( 𝐹 ∪ 𝐺 ) ‘ 𝐴 ) = ( ( 𝐹 ‘ 𝐴 ) ∪ ( 𝐺 ‘ 𝐴 ) ) ) |