Description: Translate membership in a 0-based half-open integer range. (Contributed by AV, 30-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | fzo0addel | ⊢ ( ( 𝐴 ∈ ( 0 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) ∈ ( 𝐷 ..^ ( 𝐶 + 𝐷 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzoaddel | ⊢ ( ( 𝐴 ∈ ( 0 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) ∈ ( ( 0 + 𝐷 ) ..^ ( 𝐶 + 𝐷 ) ) ) | |
2 | zcn | ⊢ ( 𝐷 ∈ ℤ → 𝐷 ∈ ℂ ) | |
3 | addid2 | ⊢ ( 𝐷 ∈ ℂ → ( 0 + 𝐷 ) = 𝐷 ) | |
4 | 3 | eqcomd | ⊢ ( 𝐷 ∈ ℂ → 𝐷 = ( 0 + 𝐷 ) ) |
5 | 2 4 | syl | ⊢ ( 𝐷 ∈ ℤ → 𝐷 = ( 0 + 𝐷 ) ) |
6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ( 0 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐷 = ( 0 + 𝐷 ) ) |
7 | 6 | oveq1d | ⊢ ( ( 𝐴 ∈ ( 0 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐷 ..^ ( 𝐶 + 𝐷 ) ) = ( ( 0 + 𝐷 ) ..^ ( 𝐶 + 𝐷 ) ) ) |
8 | 1 7 | eleqtrrd | ⊢ ( ( 𝐴 ∈ ( 0 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) ∈ ( 𝐷 ..^ ( 𝐶 + 𝐷 ) ) ) |