Metamath Proof Explorer


Theorem fzo0addel

Description: Translate membership in a 0-based half-open integer range. (Contributed by AV, 30-Apr-2020)

Ref Expression
Assertion fzo0addel ( ( 𝐴 ∈ ( 0 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) ∈ ( 𝐷 ..^ ( 𝐶 + 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 fzoaddel ( ( 𝐴 ∈ ( 0 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) ∈ ( ( 0 + 𝐷 ) ..^ ( 𝐶 + 𝐷 ) ) )
2 zcn ( 𝐷 ∈ ℤ → 𝐷 ∈ ℂ )
3 addid2 ( 𝐷 ∈ ℂ → ( 0 + 𝐷 ) = 𝐷 )
4 3 eqcomd ( 𝐷 ∈ ℂ → 𝐷 = ( 0 + 𝐷 ) )
5 2 4 syl ( 𝐷 ∈ ℤ → 𝐷 = ( 0 + 𝐷 ) )
6 5 adantl ( ( 𝐴 ∈ ( 0 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐷 = ( 0 + 𝐷 ) )
7 6 oveq1d ( ( 𝐴 ∈ ( 0 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐷 ..^ ( 𝐶 + 𝐷 ) ) = ( ( 0 + 𝐷 ) ..^ ( 𝐶 + 𝐷 ) ) )
8 1 7 eleqtrrd ( ( 𝐴 ∈ ( 0 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) ∈ ( 𝐷 ..^ ( 𝐶 + 𝐷 ) ) )