| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 2 |  | fztp | ⊢ ( 1  ∈  ℤ  →  ( 1 ... ( 1  +  2 ) )  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) } ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( 1 ... ( 1  +  2 ) )  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) } | 
						
							| 4 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 5 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 6 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 7 | 5 6 | addcomi | ⊢ ( 2  +  1 )  =  ( 1  +  2 ) | 
						
							| 8 | 4 7 | eqtri | ⊢ 3  =  ( 1  +  2 ) | 
						
							| 9 | 8 | oveq2i | ⊢ ( 1 ... 3 )  =  ( 1 ... ( 1  +  2 ) ) | 
						
							| 10 |  | tpeq3 | ⊢ ( 3  =  ( 1  +  2 )  →  { 1 ,  2 ,  3 }  =  { 1 ,  2 ,  ( 1  +  2 ) } ) | 
						
							| 11 | 8 10 | ax-mp | ⊢ { 1 ,  2 ,  3 }  =  { 1 ,  2 ,  ( 1  +  2 ) } | 
						
							| 12 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 13 |  | tpeq2 | ⊢ ( 2  =  ( 1  +  1 )  →  { 1 ,  2 ,  ( 1  +  2 ) }  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) } ) | 
						
							| 14 | 12 13 | ax-mp | ⊢ { 1 ,  2 ,  ( 1  +  2 ) }  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) } | 
						
							| 15 | 11 14 | eqtri | ⊢ { 1 ,  2 ,  3 }  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) } | 
						
							| 16 | 3 9 15 | 3eqtr4i | ⊢ ( 1 ... 3 )  =  { 1 ,  2 ,  3 } | 
						
							| 17 | 16 | raleqi | ⊢ ( ∀ 𝑥  ∈  ( 1 ... 3 ) ( 𝐹 ‘ 𝑥 )  =  if ( 𝑥  =  1 ,  𝐴 ,  if ( 𝑥  =  2 ,  𝐵 ,  𝐶 ) )  ↔  ∀ 𝑥  ∈  { 1 ,  2 ,  3 } ( 𝐹 ‘ 𝑥 )  =  if ( 𝑥  =  1 ,  𝐴 ,  if ( 𝑥  =  2 ,  𝐵 ,  𝐶 ) ) ) | 
						
							| 18 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 19 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 20 |  | 3ex | ⊢ 3  ∈  V | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑥  =  1  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 22 |  | iftrue | ⊢ ( 𝑥  =  1  →  if ( 𝑥  =  1 ,  𝐴 ,  if ( 𝑥  =  2 ,  𝐵 ,  𝐶 ) )  =  𝐴 ) | 
						
							| 23 | 21 22 | eqeq12d | ⊢ ( 𝑥  =  1  →  ( ( 𝐹 ‘ 𝑥 )  =  if ( 𝑥  =  1 ,  𝐴 ,  if ( 𝑥  =  2 ,  𝐵 ,  𝐶 ) )  ↔  ( 𝐹 ‘ 1 )  =  𝐴 ) ) | 
						
							| 24 |  | fveq2 | ⊢ ( 𝑥  =  2  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 2 ) ) | 
						
							| 25 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 26 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 27 | 25 26 | gtneii | ⊢ 2  ≠  1 | 
						
							| 28 |  | neeq1 | ⊢ ( 𝑥  =  2  →  ( 𝑥  ≠  1  ↔  2  ≠  1 ) ) | 
						
							| 29 | 27 28 | mpbiri | ⊢ ( 𝑥  =  2  →  𝑥  ≠  1 ) | 
						
							| 30 |  | ifnefalse | ⊢ ( 𝑥  ≠  1  →  if ( 𝑥  =  1 ,  𝐴 ,  if ( 𝑥  =  2 ,  𝐵 ,  𝐶 ) )  =  if ( 𝑥  =  2 ,  𝐵 ,  𝐶 ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( 𝑥  =  2  →  if ( 𝑥  =  1 ,  𝐴 ,  if ( 𝑥  =  2 ,  𝐵 ,  𝐶 ) )  =  if ( 𝑥  =  2 ,  𝐵 ,  𝐶 ) ) | 
						
							| 32 |  | iftrue | ⊢ ( 𝑥  =  2  →  if ( 𝑥  =  2 ,  𝐵 ,  𝐶 )  =  𝐵 ) | 
						
							| 33 | 31 32 | eqtrd | ⊢ ( 𝑥  =  2  →  if ( 𝑥  =  1 ,  𝐴 ,  if ( 𝑥  =  2 ,  𝐵 ,  𝐶 ) )  =  𝐵 ) | 
						
							| 34 | 24 33 | eqeq12d | ⊢ ( 𝑥  =  2  →  ( ( 𝐹 ‘ 𝑥 )  =  if ( 𝑥  =  1 ,  𝐴 ,  if ( 𝑥  =  2 ,  𝐵 ,  𝐶 ) )  ↔  ( 𝐹 ‘ 2 )  =  𝐵 ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑥  =  3  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 3 ) ) | 
						
							| 36 |  | 1lt3 | ⊢ 1  <  3 | 
						
							| 37 | 25 36 | gtneii | ⊢ 3  ≠  1 | 
						
							| 38 |  | neeq1 | ⊢ ( 𝑥  =  3  →  ( 𝑥  ≠  1  ↔  3  ≠  1 ) ) | 
						
							| 39 | 37 38 | mpbiri | ⊢ ( 𝑥  =  3  →  𝑥  ≠  1 ) | 
						
							| 40 | 39 30 | syl | ⊢ ( 𝑥  =  3  →  if ( 𝑥  =  1 ,  𝐴 ,  if ( 𝑥  =  2 ,  𝐵 ,  𝐶 ) )  =  if ( 𝑥  =  2 ,  𝐵 ,  𝐶 ) ) | 
						
							| 41 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 42 |  | 2lt3 | ⊢ 2  <  3 | 
						
							| 43 | 41 42 | gtneii | ⊢ 3  ≠  2 | 
						
							| 44 |  | neeq1 | ⊢ ( 𝑥  =  3  →  ( 𝑥  ≠  2  ↔  3  ≠  2 ) ) | 
						
							| 45 | 43 44 | mpbiri | ⊢ ( 𝑥  =  3  →  𝑥  ≠  2 ) | 
						
							| 46 |  | ifnefalse | ⊢ ( 𝑥  ≠  2  →  if ( 𝑥  =  2 ,  𝐵 ,  𝐶 )  =  𝐶 ) | 
						
							| 47 | 45 46 | syl | ⊢ ( 𝑥  =  3  →  if ( 𝑥  =  2 ,  𝐵 ,  𝐶 )  =  𝐶 ) | 
						
							| 48 | 40 47 | eqtrd | ⊢ ( 𝑥  =  3  →  if ( 𝑥  =  1 ,  𝐴 ,  if ( 𝑥  =  2 ,  𝐵 ,  𝐶 ) )  =  𝐶 ) | 
						
							| 49 | 35 48 | eqeq12d | ⊢ ( 𝑥  =  3  →  ( ( 𝐹 ‘ 𝑥 )  =  if ( 𝑥  =  1 ,  𝐴 ,  if ( 𝑥  =  2 ,  𝐵 ,  𝐶 ) )  ↔  ( 𝐹 ‘ 3 )  =  𝐶 ) ) | 
						
							| 50 | 18 19 20 23 34 49 | raltp | ⊢ ( ∀ 𝑥  ∈  { 1 ,  2 ,  3 } ( 𝐹 ‘ 𝑥 )  =  if ( 𝑥  =  1 ,  𝐴 ,  if ( 𝑥  =  2 ,  𝐵 ,  𝐶 ) )  ↔  ( ( 𝐹 ‘ 1 )  =  𝐴  ∧  ( 𝐹 ‘ 2 )  =  𝐵  ∧  ( 𝐹 ‘ 3 )  =  𝐶 ) ) | 
						
							| 51 | 17 50 | bitri | ⊢ ( ∀ 𝑥  ∈  ( 1 ... 3 ) ( 𝐹 ‘ 𝑥 )  =  if ( 𝑥  =  1 ,  𝐴 ,  if ( 𝑥  =  2 ,  𝐵 ,  𝐶 ) )  ↔  ( ( 𝐹 ‘ 1 )  =  𝐴  ∧  ( 𝐹 ‘ 2 )  =  𝐵  ∧  ( 𝐹 ‘ 3 )  =  𝐶 ) ) |