| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1z |  |-  1 e. ZZ | 
						
							| 2 |  | fztp |  |-  ( 1 e. ZZ -> ( 1 ... ( 1 + 2 ) ) = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( 1 ... ( 1 + 2 ) ) = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } | 
						
							| 4 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 5 |  | 2cn |  |-  2 e. CC | 
						
							| 6 |  | ax-1cn |  |-  1 e. CC | 
						
							| 7 | 5 6 | addcomi |  |-  ( 2 + 1 ) = ( 1 + 2 ) | 
						
							| 8 | 4 7 | eqtri |  |-  3 = ( 1 + 2 ) | 
						
							| 9 | 8 | oveq2i |  |-  ( 1 ... 3 ) = ( 1 ... ( 1 + 2 ) ) | 
						
							| 10 |  | tpeq3 |  |-  ( 3 = ( 1 + 2 ) -> { 1 , 2 , 3 } = { 1 , 2 , ( 1 + 2 ) } ) | 
						
							| 11 | 8 10 | ax-mp |  |-  { 1 , 2 , 3 } = { 1 , 2 , ( 1 + 2 ) } | 
						
							| 12 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 13 |  | tpeq2 |  |-  ( 2 = ( 1 + 1 ) -> { 1 , 2 , ( 1 + 2 ) } = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } ) | 
						
							| 14 | 12 13 | ax-mp |  |-  { 1 , 2 , ( 1 + 2 ) } = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } | 
						
							| 15 | 11 14 | eqtri |  |-  { 1 , 2 , 3 } = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } | 
						
							| 16 | 3 9 15 | 3eqtr4i |  |-  ( 1 ... 3 ) = { 1 , 2 , 3 } | 
						
							| 17 | 16 | raleqi |  |-  ( A. x e. ( 1 ... 3 ) ( F ` x ) = if ( x = 1 , A , if ( x = 2 , B , C ) ) <-> A. x e. { 1 , 2 , 3 } ( F ` x ) = if ( x = 1 , A , if ( x = 2 , B , C ) ) ) | 
						
							| 18 |  | 1ex |  |-  1 e. _V | 
						
							| 19 |  | 2ex |  |-  2 e. _V | 
						
							| 20 |  | 3ex |  |-  3 e. _V | 
						
							| 21 |  | fveq2 |  |-  ( x = 1 -> ( F ` x ) = ( F ` 1 ) ) | 
						
							| 22 |  | iftrue |  |-  ( x = 1 -> if ( x = 1 , A , if ( x = 2 , B , C ) ) = A ) | 
						
							| 23 | 21 22 | eqeq12d |  |-  ( x = 1 -> ( ( F ` x ) = if ( x = 1 , A , if ( x = 2 , B , C ) ) <-> ( F ` 1 ) = A ) ) | 
						
							| 24 |  | fveq2 |  |-  ( x = 2 -> ( F ` x ) = ( F ` 2 ) ) | 
						
							| 25 |  | 1re |  |-  1 e. RR | 
						
							| 26 |  | 1lt2 |  |-  1 < 2 | 
						
							| 27 | 25 26 | gtneii |  |-  2 =/= 1 | 
						
							| 28 |  | neeq1 |  |-  ( x = 2 -> ( x =/= 1 <-> 2 =/= 1 ) ) | 
						
							| 29 | 27 28 | mpbiri |  |-  ( x = 2 -> x =/= 1 ) | 
						
							| 30 |  | ifnefalse |  |-  ( x =/= 1 -> if ( x = 1 , A , if ( x = 2 , B , C ) ) = if ( x = 2 , B , C ) ) | 
						
							| 31 | 29 30 | syl |  |-  ( x = 2 -> if ( x = 1 , A , if ( x = 2 , B , C ) ) = if ( x = 2 , B , C ) ) | 
						
							| 32 |  | iftrue |  |-  ( x = 2 -> if ( x = 2 , B , C ) = B ) | 
						
							| 33 | 31 32 | eqtrd |  |-  ( x = 2 -> if ( x = 1 , A , if ( x = 2 , B , C ) ) = B ) | 
						
							| 34 | 24 33 | eqeq12d |  |-  ( x = 2 -> ( ( F ` x ) = if ( x = 1 , A , if ( x = 2 , B , C ) ) <-> ( F ` 2 ) = B ) ) | 
						
							| 35 |  | fveq2 |  |-  ( x = 3 -> ( F ` x ) = ( F ` 3 ) ) | 
						
							| 36 |  | 1lt3 |  |-  1 < 3 | 
						
							| 37 | 25 36 | gtneii |  |-  3 =/= 1 | 
						
							| 38 |  | neeq1 |  |-  ( x = 3 -> ( x =/= 1 <-> 3 =/= 1 ) ) | 
						
							| 39 | 37 38 | mpbiri |  |-  ( x = 3 -> x =/= 1 ) | 
						
							| 40 | 39 30 | syl |  |-  ( x = 3 -> if ( x = 1 , A , if ( x = 2 , B , C ) ) = if ( x = 2 , B , C ) ) | 
						
							| 41 |  | 2re |  |-  2 e. RR | 
						
							| 42 |  | 2lt3 |  |-  2 < 3 | 
						
							| 43 | 41 42 | gtneii |  |-  3 =/= 2 | 
						
							| 44 |  | neeq1 |  |-  ( x = 3 -> ( x =/= 2 <-> 3 =/= 2 ) ) | 
						
							| 45 | 43 44 | mpbiri |  |-  ( x = 3 -> x =/= 2 ) | 
						
							| 46 |  | ifnefalse |  |-  ( x =/= 2 -> if ( x = 2 , B , C ) = C ) | 
						
							| 47 | 45 46 | syl |  |-  ( x = 3 -> if ( x = 2 , B , C ) = C ) | 
						
							| 48 | 40 47 | eqtrd |  |-  ( x = 3 -> if ( x = 1 , A , if ( x = 2 , B , C ) ) = C ) | 
						
							| 49 | 35 48 | eqeq12d |  |-  ( x = 3 -> ( ( F ` x ) = if ( x = 1 , A , if ( x = 2 , B , C ) ) <-> ( F ` 3 ) = C ) ) | 
						
							| 50 | 18 19 20 23 34 49 | raltp |  |-  ( A. x e. { 1 , 2 , 3 } ( F ` x ) = if ( x = 1 , A , if ( x = 2 , B , C ) ) <-> ( ( F ` 1 ) = A /\ ( F ` 2 ) = B /\ ( F ` 3 ) = C ) ) | 
						
							| 51 | 17 50 | bitri |  |-  ( A. x e. ( 1 ... 3 ) ( F ` x ) = if ( x = 1 , A , if ( x = 2 , B , C ) ) <-> ( ( F ` 1 ) = A /\ ( F ` 2 ) = B /\ ( F ` 3 ) = C ) ) |