| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcdcllem2.1 | ⊢ 𝑆  =  { 𝑧  ∈  ℤ  ∣  ∀ 𝑛  ∈  { 𝑀 ,  𝑁 } 𝑧  ∥  𝑛 } | 
						
							| 2 |  | gcdcllem2.2 | ⊢ 𝑅  =  { 𝑧  ∈  ℤ  ∣  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) } | 
						
							| 3 |  | breq1 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  ∥  𝑀  ↔  𝑥  ∥  𝑀 ) ) | 
						
							| 4 |  | breq1 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  ∥  𝑁  ↔  𝑥  ∥  𝑁 ) ) | 
						
							| 5 | 3 4 | anbi12d | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 )  ↔  ( 𝑥  ∥  𝑀  ∧  𝑥  ∥  𝑁 ) ) ) | 
						
							| 6 | 5 2 | elrab2 | ⊢ ( 𝑥  ∈  𝑅  ↔  ( 𝑥  ∈  ℤ  ∧  ( 𝑥  ∥  𝑀  ∧  𝑥  ∥  𝑁 ) ) ) | 
						
							| 7 |  | breq1 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  ∥  𝑛  ↔  𝑥  ∥  𝑛 ) ) | 
						
							| 8 | 7 | ralbidv | ⊢ ( 𝑧  =  𝑥  →  ( ∀ 𝑛  ∈  { 𝑀 ,  𝑁 } 𝑧  ∥  𝑛  ↔  ∀ 𝑛  ∈  { 𝑀 ,  𝑁 } 𝑥  ∥  𝑛 ) ) | 
						
							| 9 | 8 1 | elrab2 | ⊢ ( 𝑥  ∈  𝑆  ↔  ( 𝑥  ∈  ℤ  ∧  ∀ 𝑛  ∈  { 𝑀 ,  𝑁 } 𝑥  ∥  𝑛 ) ) | 
						
							| 10 |  | breq2 | ⊢ ( 𝑛  =  𝑀  →  ( 𝑥  ∥  𝑛  ↔  𝑥  ∥  𝑀 ) ) | 
						
							| 11 |  | breq2 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑥  ∥  𝑛  ↔  𝑥  ∥  𝑁 ) ) | 
						
							| 12 | 10 11 | ralprg | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ∀ 𝑛  ∈  { 𝑀 ,  𝑁 } 𝑥  ∥  𝑛  ↔  ( 𝑥  ∥  𝑀  ∧  𝑥  ∥  𝑁 ) ) ) | 
						
							| 13 | 12 | anbi2d | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑥  ∈  ℤ  ∧  ∀ 𝑛  ∈  { 𝑀 ,  𝑁 } 𝑥  ∥  𝑛 )  ↔  ( 𝑥  ∈  ℤ  ∧  ( 𝑥  ∥  𝑀  ∧  𝑥  ∥  𝑁 ) ) ) ) | 
						
							| 14 | 9 13 | bitrid | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑥  ∈  𝑆  ↔  ( 𝑥  ∈  ℤ  ∧  ( 𝑥  ∥  𝑀  ∧  𝑥  ∥  𝑁 ) ) ) ) | 
						
							| 15 | 6 14 | bitr4id | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑥  ∈  𝑅  ↔  𝑥  ∈  𝑆 ) ) | 
						
							| 16 | 15 | eqrdv | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  𝑅  =  𝑆 ) |