| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gencbvex.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
gencbvex.2 |
⊢ ( 𝐴 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
|
gencbvex.3 |
⊢ ( 𝐴 = 𝑦 → ( 𝜒 ↔ 𝜃 ) ) |
| 4 |
|
gencbvex.4 |
⊢ ( 𝜃 ↔ ∃ 𝑥 ( 𝜒 ∧ 𝐴 = 𝑦 ) ) |
| 5 |
|
excom |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ∃ 𝑥 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ) |
| 6 |
3 2
|
anbi12d |
⊢ ( 𝐴 = 𝑦 → ( ( 𝜒 ∧ 𝜑 ) ↔ ( 𝜃 ∧ 𝜓 ) ) ) |
| 7 |
6
|
bicomd |
⊢ ( 𝐴 = 𝑦 → ( ( 𝜃 ∧ 𝜓 ) ↔ ( 𝜒 ∧ 𝜑 ) ) ) |
| 8 |
7
|
eqcoms |
⊢ ( 𝑦 = 𝐴 → ( ( 𝜃 ∧ 𝜓 ) ↔ ( 𝜒 ∧ 𝜑 ) ) ) |
| 9 |
1 8
|
ceqsexv |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ( 𝜒 ∧ 𝜑 ) ) |
| 10 |
9
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ∃ 𝑥 ( 𝜒 ∧ 𝜑 ) ) |
| 11 |
|
19.41v |
⊢ ( ∃ 𝑥 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ( ∃ 𝑥 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ) |
| 12 |
|
simpr |
⊢ ( ( ∃ 𝑥 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) → ( 𝜃 ∧ 𝜓 ) ) |
| 13 |
|
eqcom |
⊢ ( 𝐴 = 𝑦 ↔ 𝑦 = 𝐴 ) |
| 14 |
13
|
biimpi |
⊢ ( 𝐴 = 𝑦 → 𝑦 = 𝐴 ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜒 ∧ 𝐴 = 𝑦 ) → 𝑦 = 𝐴 ) |
| 16 |
15
|
eximi |
⊢ ( ∃ 𝑥 ( 𝜒 ∧ 𝐴 = 𝑦 ) → ∃ 𝑥 𝑦 = 𝐴 ) |
| 17 |
4 16
|
sylbi |
⊢ ( 𝜃 → ∃ 𝑥 𝑦 = 𝐴 ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜃 ∧ 𝜓 ) → ∃ 𝑥 𝑦 = 𝐴 ) |
| 19 |
18
|
ancri |
⊢ ( ( 𝜃 ∧ 𝜓 ) → ( ∃ 𝑥 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ) |
| 20 |
12 19
|
impbii |
⊢ ( ( ∃ 𝑥 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ( 𝜃 ∧ 𝜓 ) ) |
| 21 |
11 20
|
bitri |
⊢ ( ∃ 𝑥 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ( 𝜃 ∧ 𝜓 ) ) |
| 22 |
21
|
exbii |
⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ( 𝜃 ∧ 𝜓 ) ) |
| 23 |
5 10 22
|
3bitr3i |
⊢ ( ∃ 𝑥 ( 𝜒 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝜃 ∧ 𝜓 ) ) |