Metamath Proof Explorer


Theorem gicrcl

Description: Isomorphism implies the right side is a group. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion gicrcl ( 𝑅𝑔 𝑆𝑆 ∈ Grp )

Proof

Step Hyp Ref Expression
1 brgic ( 𝑅𝑔 𝑆 ↔ ( 𝑅 GrpIso 𝑆 ) ≠ ∅ )
2 n0 ( ( 𝑅 GrpIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) )
3 1 2 bitri ( 𝑅𝑔 𝑆 ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) )
4 gimghm ( 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑓 ∈ ( 𝑅 GrpHom 𝑆 ) )
5 ghmgrp2 ( 𝑓 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑆 ∈ Grp )
6 4 5 syl ( 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑆 ∈ Grp )
7 6 exlimiv ( ∃ 𝑓 𝑓 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝑆 ∈ Grp )
8 3 7 sylbi ( 𝑅𝑔 𝑆𝑆 ∈ Grp )