Metamath Proof Explorer


Theorem gicrcl

Description: Isomorphism implies the right side is a group. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion gicrcl R𝑔SSGrp

Proof

Step Hyp Ref Expression
1 brgic R𝑔SRGrpIsoS
2 n0 RGrpIsoSffRGrpIsoS
3 1 2 bitri R𝑔SffRGrpIsoS
4 gimghm fRGrpIsoSfRGrpHomS
5 ghmgrp2 fRGrpHomSSGrp
6 4 5 syl fRGrpIsoSSGrp
7 6 exlimiv ffRGrpIsoSSGrp
8 3 7 sylbi R𝑔SSGrp