Description: Isomorphism implies the right side is a group. (Contributed by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gicrcl | |- ( R ~=g S -> S e. Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgic | |- ( R ~=g S <-> ( R GrpIso S ) =/= (/) ) |
|
| 2 | n0 | |- ( ( R GrpIso S ) =/= (/) <-> E. f f e. ( R GrpIso S ) ) |
|
| 3 | 1 2 | bitri | |- ( R ~=g S <-> E. f f e. ( R GrpIso S ) ) |
| 4 | gimghm | |- ( f e. ( R GrpIso S ) -> f e. ( R GrpHom S ) ) |
|
| 5 | ghmgrp2 | |- ( f e. ( R GrpHom S ) -> S e. Grp ) |
|
| 6 | 4 5 | syl | |- ( f e. ( R GrpIso S ) -> S e. Grp ) |
| 7 | 6 | exlimiv | |- ( E. f f e. ( R GrpIso S ) -> S e. Grp ) |
| 8 | 3 7 | sylbi | |- ( R ~=g S -> S e. Grp ) |