| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ) → 𝑈 ∈ Univ ) |
| 2 |
|
gruiun |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ) |
| 3 |
|
simp2 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ) → 𝐴 ∈ 𝑈 ) |
| 4 |
|
grumap |
⊢ ( ( 𝑈 ∈ Univ ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ∧ 𝐴 ∈ 𝑈 ) → ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ∈ 𝑈 ) |
| 5 |
1 2 3 4
|
syl3anc |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ) → ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ∈ 𝑈 ) |
| 6 |
|
ixpssmapg |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
| 7 |
6
|
3ad2ant3 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ) → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
| 8 |
|
gruss |
⊢ ( ( 𝑈 ∈ Univ ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ∈ 𝑈 ∧ X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) → X 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ) |
| 9 |
1 5 7 8
|
syl3anc |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ) → X 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ) |