Metamath Proof Explorer


Theorem grumap

Description: A Grothendieck universe contains all powers of its elements. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion grumap ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → ( 𝐴m 𝐵 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → 𝑈 ∈ Univ )
2 gruxp ( ( 𝑈 ∈ Univ ∧ 𝐵𝑈𝐴𝑈 ) → ( 𝐵 × 𝐴 ) ∈ 𝑈 )
3 2 3com23 ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → ( 𝐵 × 𝐴 ) ∈ 𝑈 )
4 grupw ( ( 𝑈 ∈ Univ ∧ ( 𝐵 × 𝐴 ) ∈ 𝑈 ) → 𝒫 ( 𝐵 × 𝐴 ) ∈ 𝑈 )
5 1 3 4 syl2anc ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → 𝒫 ( 𝐵 × 𝐴 ) ∈ 𝑈 )
6 mapsspw ( 𝐴m 𝐵 ) ⊆ 𝒫 ( 𝐵 × 𝐴 )
7 6 a1i ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → ( 𝐴m 𝐵 ) ⊆ 𝒫 ( 𝐵 × 𝐴 ) )
8 gruss ( ( 𝑈 ∈ Univ ∧ 𝒫 ( 𝐵 × 𝐴 ) ∈ 𝑈 ∧ ( 𝐴m 𝐵 ) ⊆ 𝒫 ( 𝐵 × 𝐴 ) ) → ( 𝐴m 𝐵 ) ∈ 𝑈 )
9 1 5 7 8 syl3anc ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → ( 𝐴m 𝐵 ) ∈ 𝑈 )