| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → 𝑈 ∈ Univ ) |
| 2 |
|
gruxp |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ 𝐴 ∈ 𝑈 ) → ( 𝐵 × 𝐴 ) ∈ 𝑈 ) |
| 3 |
2
|
3com23 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ( 𝐵 × 𝐴 ) ∈ 𝑈 ) |
| 4 |
|
grupw |
⊢ ( ( 𝑈 ∈ Univ ∧ ( 𝐵 × 𝐴 ) ∈ 𝑈 ) → 𝒫 ( 𝐵 × 𝐴 ) ∈ 𝑈 ) |
| 5 |
1 3 4
|
syl2anc |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → 𝒫 ( 𝐵 × 𝐴 ) ∈ 𝑈 ) |
| 6 |
|
mapsspw |
⊢ ( 𝐴 ↑m 𝐵 ) ⊆ 𝒫 ( 𝐵 × 𝐴 ) |
| 7 |
6
|
a1i |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ( 𝐴 ↑m 𝐵 ) ⊆ 𝒫 ( 𝐵 × 𝐴 ) ) |
| 8 |
|
gruss |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝒫 ( 𝐵 × 𝐴 ) ∈ 𝑈 ∧ ( 𝐴 ↑m 𝐵 ) ⊆ 𝒫 ( 𝐵 × 𝐴 ) ) → ( 𝐴 ↑m 𝐵 ) ∈ 𝑈 ) |
| 9 |
1 5 7 8
|
syl3anc |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ( 𝐴 ↑m 𝐵 ) ∈ 𝑈 ) |