| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gruun |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) |
| 2 |
|
grupw |
⊢ ( ( 𝑈 ∈ Univ ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) → 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) |
| 3 |
|
grupw |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) → 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) |
| 4 |
|
xpsspw |
⊢ ( 𝐴 × 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) |
| 5 |
|
gruss |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ∧ ( 𝐴 × 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ) → ( 𝐴 × 𝐵 ) ∈ 𝑈 ) |
| 6 |
4 5
|
mp3an3 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) → ( 𝐴 × 𝐵 ) ∈ 𝑈 ) |
| 7 |
3 6
|
syldan |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) → ( 𝐴 × 𝐵 ) ∈ 𝑈 ) |
| 8 |
2 7
|
syldan |
⊢ ( ( 𝑈 ∈ Univ ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) → ( 𝐴 × 𝐵 ) ∈ 𝑈 ) |
| 9 |
8
|
3ad2antl1 |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) → ( 𝐴 × 𝐵 ) ∈ 𝑈 ) |
| 10 |
1 9
|
mpdan |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ( 𝐴 × 𝐵 ) ∈ 𝑈 ) |