Metamath Proof Explorer


Theorem gruxp

Description: A Grothendieck universe contains binary cartesian products of its elements. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruxp ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → ( 𝐴 × 𝐵 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 gruun ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → ( 𝐴𝐵 ) ∈ 𝑈 )
2 grupw ( ( 𝑈 ∈ Univ ∧ ( 𝐴𝐵 ) ∈ 𝑈 ) → 𝒫 ( 𝐴𝐵 ) ∈ 𝑈 )
3 grupw ( ( 𝑈 ∈ Univ ∧ 𝒫 ( 𝐴𝐵 ) ∈ 𝑈 ) → 𝒫 𝒫 ( 𝐴𝐵 ) ∈ 𝑈 )
4 xpsspw ( 𝐴 × 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴𝐵 )
5 gruss ( ( 𝑈 ∈ Univ ∧ 𝒫 𝒫 ( 𝐴𝐵 ) ∈ 𝑈 ∧ ( 𝐴 × 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴𝐵 ) ) → ( 𝐴 × 𝐵 ) ∈ 𝑈 )
6 4 5 mp3an3 ( ( 𝑈 ∈ Univ ∧ 𝒫 𝒫 ( 𝐴𝐵 ) ∈ 𝑈 ) → ( 𝐴 × 𝐵 ) ∈ 𝑈 )
7 3 6 syldan ( ( 𝑈 ∈ Univ ∧ 𝒫 ( 𝐴𝐵 ) ∈ 𝑈 ) → ( 𝐴 × 𝐵 ) ∈ 𝑈 )
8 2 7 syldan ( ( 𝑈 ∈ Univ ∧ ( 𝐴𝐵 ) ∈ 𝑈 ) → ( 𝐴 × 𝐵 ) ∈ 𝑈 )
9 8 3ad2antl1 ( ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) ∧ ( 𝐴𝐵 ) ∈ 𝑈 ) → ( 𝐴 × 𝐵 ) ∈ 𝑈 )
10 1 9 mpdan ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → ( 𝐴 × 𝐵 ) ∈ 𝑈 )