Metamath Proof Explorer


Theorem gsumcom

Description: Commute the arguments of a double sum. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses gsumxp.b 𝐵 = ( Base ‘ 𝐺 )
gsumxp.z 0 = ( 0g𝐺 )
gsumxp.g ( 𝜑𝐺 ∈ CMnd )
gsumxp.a ( 𝜑𝐴𝑉 )
gsumxp.r ( 𝜑𝐶𝑊 )
gsumcom.f ( ( 𝜑 ∧ ( 𝑗𝐴𝑘𝐶 ) ) → 𝑋𝐵 )
gsumcom.u ( 𝜑𝑈 ∈ Fin )
gsumcom.n ( ( 𝜑 ∧ ( ( 𝑗𝐴𝑘𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) ) → 𝑋 = 0 )
Assertion gsumcom ( 𝜑 → ( 𝐺 Σg ( 𝑗𝐴 , 𝑘𝐶𝑋 ) ) = ( 𝐺 Σg ( 𝑘𝐶 , 𝑗𝐴𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 gsumxp.b 𝐵 = ( Base ‘ 𝐺 )
2 gsumxp.z 0 = ( 0g𝐺 )
3 gsumxp.g ( 𝜑𝐺 ∈ CMnd )
4 gsumxp.a ( 𝜑𝐴𝑉 )
5 gsumxp.r ( 𝜑𝐶𝑊 )
6 gsumcom.f ( ( 𝜑 ∧ ( 𝑗𝐴𝑘𝐶 ) ) → 𝑋𝐵 )
7 gsumcom.u ( 𝜑𝑈 ∈ Fin )
8 gsumcom.n ( ( 𝜑 ∧ ( ( 𝑗𝐴𝑘𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) ) → 𝑋 = 0 )
9 5 adantr ( ( 𝜑𝑗𝐴 ) → 𝐶𝑊 )
10 ancom ( ( 𝑗𝐴𝑘𝐶 ) ↔ ( 𝑘𝐶𝑗𝐴 ) )
11 10 a1i ( 𝜑 → ( ( 𝑗𝐴𝑘𝐶 ) ↔ ( 𝑘𝐶𝑗𝐴 ) ) )
12 1 2 3 4 9 6 7 8 5 11 gsumcom2 ( 𝜑 → ( 𝐺 Σg ( 𝑗𝐴 , 𝑘𝐶𝑋 ) ) = ( 𝐺 Σg ( 𝑘𝐶 , 𝑗𝐴𝑋 ) ) )