Metamath Proof Explorer


Theorem gsumcom3

Description: A commutative law for finitely supported iterated sums. (Contributed by Stefan O'Rear, 2-Nov-2015)

Ref Expression
Hypotheses gsumcom3.b 𝐵 = ( Base ‘ 𝐺 )
gsumcom3.z 0 = ( 0g𝐺 )
gsumcom3.g ( 𝜑𝐺 ∈ CMnd )
gsumcom3.a ( 𝜑𝐴𝑉 )
gsumcom3.r ( 𝜑𝐶𝑊 )
gsumcom3.f ( ( 𝜑 ∧ ( 𝑗𝐴𝑘𝐶 ) ) → 𝑋𝐵 )
gsumcom3.u ( 𝜑𝑈 ∈ Fin )
gsumcom3.n ( ( 𝜑 ∧ ( ( 𝑗𝐴𝑘𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) ) → 𝑋 = 0 )
Assertion gsumcom3 ( 𝜑 → ( 𝐺 Σg ( 𝑗𝐴 ↦ ( 𝐺 Σg ( 𝑘𝐶𝑋 ) ) ) ) = ( 𝐺 Σg ( 𝑘𝐶 ↦ ( 𝐺 Σg ( 𝑗𝐴𝑋 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 gsumcom3.b 𝐵 = ( Base ‘ 𝐺 )
2 gsumcom3.z 0 = ( 0g𝐺 )
3 gsumcom3.g ( 𝜑𝐺 ∈ CMnd )
4 gsumcom3.a ( 𝜑𝐴𝑉 )
5 gsumcom3.r ( 𝜑𝐶𝑊 )
6 gsumcom3.f ( ( 𝜑 ∧ ( 𝑗𝐴𝑘𝐶 ) ) → 𝑋𝐵 )
7 gsumcom3.u ( 𝜑𝑈 ∈ Fin )
8 gsumcom3.n ( ( 𝜑 ∧ ( ( 𝑗𝐴𝑘𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) ) → 𝑋 = 0 )
9 1 2 3 4 5 6 7 8 gsumcom ( 𝜑 → ( 𝐺 Σg ( 𝑗𝐴 , 𝑘𝐶𝑋 ) ) = ( 𝐺 Σg ( 𝑘𝐶 , 𝑗𝐴𝑋 ) ) )
10 5 adantr ( ( 𝜑𝑗𝐴 ) → 𝐶𝑊 )
11 1 2 3 4 10 6 7 8 gsum2d2 ( 𝜑 → ( 𝐺 Σg ( 𝑗𝐴 , 𝑘𝐶𝑋 ) ) = ( 𝐺 Σg ( 𝑗𝐴 ↦ ( 𝐺 Σg ( 𝑘𝐶𝑋 ) ) ) ) )
12 4 adantr ( ( 𝜑𝑘𝐶 ) → 𝐴𝑉 )
13 6 ancom2s ( ( 𝜑 ∧ ( 𝑘𝐶𝑗𝐴 ) ) → 𝑋𝐵 )
14 cnvfi ( 𝑈 ∈ Fin → 𝑈 ∈ Fin )
15 7 14 syl ( 𝜑 𝑈 ∈ Fin )
16 ancom ( ( 𝑘𝐶𝑗𝐴 ) ↔ ( 𝑗𝐴𝑘𝐶 ) )
17 vex 𝑘 ∈ V
18 vex 𝑗 ∈ V
19 17 18 brcnv ( 𝑘 𝑈 𝑗𝑗 𝑈 𝑘 )
20 19 notbii ( ¬ 𝑘 𝑈 𝑗 ↔ ¬ 𝑗 𝑈 𝑘 )
21 16 20 anbi12i ( ( ( 𝑘𝐶𝑗𝐴 ) ∧ ¬ 𝑘 𝑈 𝑗 ) ↔ ( ( 𝑗𝐴𝑘𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) )
22 21 8 sylan2b ( ( 𝜑 ∧ ( ( 𝑘𝐶𝑗𝐴 ) ∧ ¬ 𝑘 𝑈 𝑗 ) ) → 𝑋 = 0 )
23 1 2 3 5 12 13 15 22 gsum2d2 ( 𝜑 → ( 𝐺 Σg ( 𝑘𝐶 , 𝑗𝐴𝑋 ) ) = ( 𝐺 Σg ( 𝑘𝐶 ↦ ( 𝐺 Σg ( 𝑗𝐴𝑋 ) ) ) ) )
24 9 11 23 3eqtr3d ( 𝜑 → ( 𝐺 Σg ( 𝑗𝐴 ↦ ( 𝐺 Σg ( 𝑘𝐶𝑋 ) ) ) ) = ( 𝐺 Σg ( 𝑘𝐶 ↦ ( 𝐺 Σg ( 𝑗𝐴𝑋 ) ) ) ) )