| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumcom3.b |
|- B = ( Base ` G ) |
| 2 |
|
gsumcom3.z |
|- .0. = ( 0g ` G ) |
| 3 |
|
gsumcom3.g |
|- ( ph -> G e. CMnd ) |
| 4 |
|
gsumcom3.a |
|- ( ph -> A e. V ) |
| 5 |
|
gsumcom3.r |
|- ( ph -> C e. W ) |
| 6 |
|
gsumcom3.f |
|- ( ( ph /\ ( j e. A /\ k e. C ) ) -> X e. B ) |
| 7 |
|
gsumcom3.u |
|- ( ph -> U e. Fin ) |
| 8 |
|
gsumcom3.n |
|- ( ( ph /\ ( ( j e. A /\ k e. C ) /\ -. j U k ) ) -> X = .0. ) |
| 9 |
1 2 3 4 5 6 7 8
|
gsumcom |
|- ( ph -> ( G gsum ( j e. A , k e. C |-> X ) ) = ( G gsum ( k e. C , j e. A |-> X ) ) ) |
| 10 |
5
|
adantr |
|- ( ( ph /\ j e. A ) -> C e. W ) |
| 11 |
1 2 3 4 10 6 7 8
|
gsum2d2 |
|- ( ph -> ( G gsum ( j e. A , k e. C |-> X ) ) = ( G gsum ( j e. A |-> ( G gsum ( k e. C |-> X ) ) ) ) ) |
| 12 |
4
|
adantr |
|- ( ( ph /\ k e. C ) -> A e. V ) |
| 13 |
6
|
ancom2s |
|- ( ( ph /\ ( k e. C /\ j e. A ) ) -> X e. B ) |
| 14 |
|
cnvfi |
|- ( U e. Fin -> `' U e. Fin ) |
| 15 |
7 14
|
syl |
|- ( ph -> `' U e. Fin ) |
| 16 |
|
ancom |
|- ( ( k e. C /\ j e. A ) <-> ( j e. A /\ k e. C ) ) |
| 17 |
|
vex |
|- k e. _V |
| 18 |
|
vex |
|- j e. _V |
| 19 |
17 18
|
brcnv |
|- ( k `' U j <-> j U k ) |
| 20 |
19
|
notbii |
|- ( -. k `' U j <-> -. j U k ) |
| 21 |
16 20
|
anbi12i |
|- ( ( ( k e. C /\ j e. A ) /\ -. k `' U j ) <-> ( ( j e. A /\ k e. C ) /\ -. j U k ) ) |
| 22 |
21 8
|
sylan2b |
|- ( ( ph /\ ( ( k e. C /\ j e. A ) /\ -. k `' U j ) ) -> X = .0. ) |
| 23 |
1 2 3 5 12 13 15 22
|
gsum2d2 |
|- ( ph -> ( G gsum ( k e. C , j e. A |-> X ) ) = ( G gsum ( k e. C |-> ( G gsum ( j e. A |-> X ) ) ) ) ) |
| 24 |
9 11 23
|
3eqtr3d |
|- ( ph -> ( G gsum ( j e. A |-> ( G gsum ( k e. C |-> X ) ) ) ) = ( G gsum ( k e. C |-> ( G gsum ( j e. A |-> X ) ) ) ) ) |