Metamath Proof Explorer


Theorem gzreim

Description: Construct a gaussian integer from real and imaginary parts. (Contributed by Mario Carneiro, 16-Jul-2014)

Ref Expression
Assertion gzreim ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℤ[i] )

Proof

Step Hyp Ref Expression
1 zgz ( 𝐴 ∈ ℤ → 𝐴 ∈ ℤ[i] )
2 igz i ∈ ℤ[i]
3 zgz ( 𝐵 ∈ ℤ → 𝐵 ∈ ℤ[i] )
4 gzmulcl ( ( i ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( i · 𝐵 ) ∈ ℤ[i] )
5 2 3 4 sylancr ( 𝐵 ∈ ℤ → ( i · 𝐵 ) ∈ ℤ[i] )
6 gzaddcl ( ( 𝐴 ∈ ℤ[i] ∧ ( i · 𝐵 ) ∈ ℤ[i] ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℤ[i] )
7 1 5 6 syl2an ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℤ[i] )