Metamath Proof Explorer


Theorem gzsubcl

Description: The gaussian integers are closed under subtraction. (Contributed by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion gzsubcl ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( 𝐴𝐵 ) ∈ ℤ[i] )

Proof

Step Hyp Ref Expression
1 gzcn ( 𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ )
2 gzcn ( 𝐵 ∈ ℤ[i] → 𝐵 ∈ ℂ )
3 negsub ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴𝐵 ) )
4 1 2 3 syl2an ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( 𝐴 + - 𝐵 ) = ( 𝐴𝐵 ) )
5 gznegcl ( 𝐵 ∈ ℤ[i] → - 𝐵 ∈ ℤ[i] )
6 gzaddcl ( ( 𝐴 ∈ ℤ[i] ∧ - 𝐵 ∈ ℤ[i] ) → ( 𝐴 + - 𝐵 ) ∈ ℤ[i] )
7 5 6 sylan2 ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( 𝐴 + - 𝐵 ) ∈ ℤ[i] )
8 4 7 eqeltrrd ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( 𝐴𝐵 ) ∈ ℤ[i] )