| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω ) | 
						
							| 2 |  | eqid | ⊢ ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card ) | 
						
							| 3 | 1 2 | hashkf | ⊢ ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card ) : Fin ⟶ ℕ0 | 
						
							| 4 |  | pnfex | ⊢ +∞  ∈  V | 
						
							| 5 | 4 | fconst | ⊢ ( ( V  ∖  Fin )  ×  { +∞ } ) : ( V  ∖  Fin ) ⟶ { +∞ } | 
						
							| 6 | 3 5 | pm3.2i | ⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card ) : Fin ⟶ ℕ0  ∧  ( ( V  ∖  Fin )  ×  { +∞ } ) : ( V  ∖  Fin ) ⟶ { +∞ } ) | 
						
							| 7 |  | disjdif | ⊢ ( Fin  ∩  ( V  ∖  Fin ) )  =  ∅ | 
						
							| 8 |  | fun | ⊢ ( ( ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card ) : Fin ⟶ ℕ0  ∧  ( ( V  ∖  Fin )  ×  { +∞ } ) : ( V  ∖  Fin ) ⟶ { +∞ } )  ∧  ( Fin  ∩  ( V  ∖  Fin ) )  =  ∅ )  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ∪  ( ( V  ∖  Fin )  ×  { +∞ } ) ) : ( Fin  ∪  ( V  ∖  Fin ) ) ⟶ ( ℕ0  ∪  { +∞ } ) ) | 
						
							| 9 | 6 7 8 | mp2an | ⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ∪  ( ( V  ∖  Fin )  ×  { +∞ } ) ) : ( Fin  ∪  ( V  ∖  Fin ) ) ⟶ ( ℕ0  ∪  { +∞ } ) | 
						
							| 10 |  | df-hash | ⊢ ♯  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ∪  ( ( V  ∖  Fin )  ×  { +∞ } ) ) | 
						
							| 11 |  | eqid | ⊢ V  =  V | 
						
							| 12 |  | df-xnn0 | ⊢ ℕ0*  =  ( ℕ0  ∪  { +∞ } ) | 
						
							| 13 |  | feq123 | ⊢ ( ( ♯  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ∪  ( ( V  ∖  Fin )  ×  { +∞ } ) )  ∧  V  =  V  ∧  ℕ0*  =  ( ℕ0  ∪  { +∞ } ) )  →  ( ♯ : V ⟶ ℕ0*  ↔  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ∪  ( ( V  ∖  Fin )  ×  { +∞ } ) ) : V ⟶ ( ℕ0  ∪  { +∞ } ) ) ) | 
						
							| 14 | 10 11 12 13 | mp3an | ⊢ ( ♯ : V ⟶ ℕ0*  ↔  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ∪  ( ( V  ∖  Fin )  ×  { +∞ } ) ) : V ⟶ ( ℕ0  ∪  { +∞ } ) ) | 
						
							| 15 |  | unvdif | ⊢ ( Fin  ∪  ( V  ∖  Fin ) )  =  V | 
						
							| 16 | 15 | feq2i | ⊢ ( ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ∪  ( ( V  ∖  Fin )  ×  { +∞ } ) ) : ( Fin  ∪  ( V  ∖  Fin ) ) ⟶ ( ℕ0  ∪  { +∞ } )  ↔  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ∪  ( ( V  ∖  Fin )  ×  { +∞ } ) ) : V ⟶ ( ℕ0  ∪  { +∞ } ) ) | 
						
							| 17 | 14 16 | bitr4i | ⊢ ( ♯ : V ⟶ ℕ0*  ↔  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ∪  ( ( V  ∖  Fin )  ×  { +∞ } ) ) : ( Fin  ∪  ( V  ∖  Fin ) ) ⟶ ( ℕ0  ∪  { +∞ } ) ) | 
						
							| 18 | 9 17 | mpbir | ⊢ ♯ : V ⟶ ℕ0* |