Metamath Proof Explorer


Theorem haushmphlem

Description: Lemma for haushmph and similar theorems. If the topological property A is preserved under injective preimages, then property A is preserved under homeomorphisms. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypotheses haushmphlem.1 ( 𝐽𝐴𝐽 ∈ Top )
haushmphlem.2 ( ( 𝐽𝐴𝑓 : 𝐾1-1 𝐽𝑓 ∈ ( 𝐾 Cn 𝐽 ) ) → 𝐾𝐴 )
Assertion haushmphlem ( 𝐽𝐾 → ( 𝐽𝐴𝐾𝐴 ) )

Proof

Step Hyp Ref Expression
1 haushmphlem.1 ( 𝐽𝐴𝐽 ∈ Top )
2 haushmphlem.2 ( ( 𝐽𝐴𝑓 : 𝐾1-1 𝐽𝑓 ∈ ( 𝐾 Cn 𝐽 ) ) → 𝐾𝐴 )
3 hmphsym ( 𝐽𝐾𝐾𝐽 )
4 hmph ( 𝐾𝐽 ↔ ( 𝐾 Homeo 𝐽 ) ≠ ∅ )
5 n0 ( ( 𝐾 Homeo 𝐽 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐾 Homeo 𝐽 ) )
6 simpl ( ( 𝐽𝐴𝑓 ∈ ( 𝐾 Homeo 𝐽 ) ) → 𝐽𝐴 )
7 eqid 𝐾 = 𝐾
8 eqid 𝐽 = 𝐽
9 7 8 hmeof1o ( 𝑓 ∈ ( 𝐾 Homeo 𝐽 ) → 𝑓 : 𝐾1-1-onto 𝐽 )
10 9 adantl ( ( 𝐽𝐴𝑓 ∈ ( 𝐾 Homeo 𝐽 ) ) → 𝑓 : 𝐾1-1-onto 𝐽 )
11 f1of1 ( 𝑓 : 𝐾1-1-onto 𝐽𝑓 : 𝐾1-1 𝐽 )
12 10 11 syl ( ( 𝐽𝐴𝑓 ∈ ( 𝐾 Homeo 𝐽 ) ) → 𝑓 : 𝐾1-1 𝐽 )
13 hmeocn ( 𝑓 ∈ ( 𝐾 Homeo 𝐽 ) → 𝑓 ∈ ( 𝐾 Cn 𝐽 ) )
14 13 adantl ( ( 𝐽𝐴𝑓 ∈ ( 𝐾 Homeo 𝐽 ) ) → 𝑓 ∈ ( 𝐾 Cn 𝐽 ) )
15 6 12 14 2 syl3anc ( ( 𝐽𝐴𝑓 ∈ ( 𝐾 Homeo 𝐽 ) ) → 𝐾𝐴 )
16 15 expcom ( 𝑓 ∈ ( 𝐾 Homeo 𝐽 ) → ( 𝐽𝐴𝐾𝐴 ) )
17 16 exlimiv ( ∃ 𝑓 𝑓 ∈ ( 𝐾 Homeo 𝐽 ) → ( 𝐽𝐴𝐾𝐴 ) )
18 5 17 sylbi ( ( 𝐾 Homeo 𝐽 ) ≠ ∅ → ( 𝐽𝐴𝐾𝐴 ) )
19 4 18 sylbi ( 𝐾𝐽 → ( 𝐽𝐴𝐾𝐴 ) )
20 3 19 syl ( 𝐽𝐾 → ( 𝐽𝐴𝐾𝐴 ) )