Metamath Proof Explorer


Theorem hlpr

Description: The scalar field of a subcomplex Hilbert space is either RR or CC . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses hlress.f 𝐹 = ( Scalar ‘ 𝑊 )
hlress.k 𝐾 = ( Base ‘ 𝐹 )
Assertion hlpr ( 𝑊 ∈ ℂHil → 𝐾 ∈ { ℝ , ℂ } )

Proof

Step Hyp Ref Expression
1 hlress.f 𝐹 = ( Scalar ‘ 𝑊 )
2 hlress.k 𝐾 = ( Base ‘ 𝐹 )
3 1 2 hlprlem ( 𝑊 ∈ ℂHil → ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝐾 ) ∈ DivRing ∧ ( ℂflds 𝐾 ) ∈ CMetSp ) )
4 eqid ( ℂflds 𝐾 ) = ( ℂflds 𝐾 )
5 4 cncdrg ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝐾 ) ∈ DivRing ∧ ( ℂflds 𝐾 ) ∈ CMetSp ) → 𝐾 ∈ { ℝ , ℂ } )
6 3 5 syl ( 𝑊 ∈ ℂHil → 𝐾 ∈ { ℝ , ℂ } )