| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlress.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | hlress.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 3 |  | ishl | ⊢ ( 𝑊  ∈  ℂHil  ↔  ( 𝑊  ∈  Ban  ∧  𝑊  ∈  ℂPreHil ) ) | 
						
							| 4 |  | df-3an | ⊢ ( ( 𝑊  ∈  CMetSp  ∧  𝐾  ∈  { ℝ ,  ℂ }  ∧  𝑊  ∈  ℂPreHil )  ↔  ( ( 𝑊  ∈  CMetSp  ∧  𝐾  ∈  { ℝ ,  ℂ } )  ∧  𝑊  ∈  ℂPreHil ) ) | 
						
							| 5 |  | 3ancomb | ⊢ ( ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil  ∧  𝐾  ∈  { ℝ ,  ℂ } )  ↔  ( 𝑊  ∈  CMetSp  ∧  𝐾  ∈  { ℝ ,  ℂ }  ∧  𝑊  ∈  ℂPreHil ) ) | 
						
							| 6 |  | cphnvc | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  NrmVec ) | 
						
							| 7 | 1 | isbn | ⊢ ( 𝑊  ∈  Ban  ↔  ( 𝑊  ∈  NrmVec  ∧  𝑊  ∈  CMetSp  ∧  𝐹  ∈  CMetSp ) ) | 
						
							| 8 |  | 3anass | ⊢ ( ( 𝑊  ∈  NrmVec  ∧  𝑊  ∈  CMetSp  ∧  𝐹  ∈  CMetSp )  ↔  ( 𝑊  ∈  NrmVec  ∧  ( 𝑊  ∈  CMetSp  ∧  𝐹  ∈  CMetSp ) ) ) | 
						
							| 9 | 7 8 | bitri | ⊢ ( 𝑊  ∈  Ban  ↔  ( 𝑊  ∈  NrmVec  ∧  ( 𝑊  ∈  CMetSp  ∧  𝐹  ∈  CMetSp ) ) ) | 
						
							| 10 | 9 | baib | ⊢ ( 𝑊  ∈  NrmVec  →  ( 𝑊  ∈  Ban  ↔  ( 𝑊  ∈  CMetSp  ∧  𝐹  ∈  CMetSp ) ) ) | 
						
							| 11 | 6 10 | syl | ⊢ ( 𝑊  ∈  ℂPreHil  →  ( 𝑊  ∈  Ban  ↔  ( 𝑊  ∈  CMetSp  ∧  𝐹  ∈  CMetSp ) ) ) | 
						
							| 12 | 1 2 | cphsca | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝐹  =  ( ℂfld  ↾s  𝐾 ) ) | 
						
							| 13 | 12 | eleq1d | ⊢ ( 𝑊  ∈  ℂPreHil  →  ( 𝐹  ∈  CMetSp  ↔  ( ℂfld  ↾s  𝐾 )  ∈  CMetSp ) ) | 
						
							| 14 | 1 2 | cphsubrg | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝐾  ∈  ( SubRing ‘ ℂfld ) ) | 
						
							| 15 |  | cphlvec | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  LVec ) | 
						
							| 16 | 1 | lvecdrng | ⊢ ( 𝑊  ∈  LVec  →  𝐹  ∈  DivRing ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝐹  ∈  DivRing ) | 
						
							| 18 | 12 17 | eqeltrrd | ⊢ ( 𝑊  ∈  ℂPreHil  →  ( ℂfld  ↾s  𝐾 )  ∈  DivRing ) | 
						
							| 19 |  | eqid | ⊢ ( ℂfld  ↾s  𝐾 )  =  ( ℂfld  ↾s  𝐾 ) | 
						
							| 20 | 19 | cncdrg | ⊢ ( ( 𝐾  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝐾 )  ∈  DivRing  ∧  ( ℂfld  ↾s  𝐾 )  ∈  CMetSp )  →  𝐾  ∈  { ℝ ,  ℂ } ) | 
						
							| 21 | 20 | 3expia | ⊢ ( ( 𝐾  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝐾 )  ∈  DivRing )  →  ( ( ℂfld  ↾s  𝐾 )  ∈  CMetSp  →  𝐾  ∈  { ℝ ,  ℂ } ) ) | 
						
							| 22 | 14 18 21 | syl2anc | ⊢ ( 𝑊  ∈  ℂPreHil  →  ( ( ℂfld  ↾s  𝐾 )  ∈  CMetSp  →  𝐾  ∈  { ℝ ,  ℂ } ) ) | 
						
							| 23 |  | elpri | ⊢ ( 𝐾  ∈  { ℝ ,  ℂ }  →  ( 𝐾  =  ℝ  ∨  𝐾  =  ℂ ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( 𝐾  =  ℝ  →  ( ℂfld  ↾s  𝐾 )  =  ( ℂfld  ↾s  ℝ ) ) | 
						
							| 25 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 26 | 25 | recld2 | ⊢ ℝ  ∈  ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) | 
						
							| 27 |  | cncms | ⊢ ℂfld  ∈  CMetSp | 
						
							| 28 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 29 |  | eqid | ⊢ ( ℂfld  ↾s  ℝ )  =  ( ℂfld  ↾s  ℝ ) | 
						
							| 30 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 31 | 29 30 25 | cmsss | ⊢ ( ( ℂfld  ∈  CMetSp  ∧  ℝ  ⊆  ℂ )  →  ( ( ℂfld  ↾s  ℝ )  ∈  CMetSp  ↔  ℝ  ∈  ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) ) | 
						
							| 32 | 27 28 31 | mp2an | ⊢ ( ( ℂfld  ↾s  ℝ )  ∈  CMetSp  ↔  ℝ  ∈  ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 33 | 26 32 | mpbir | ⊢ ( ℂfld  ↾s  ℝ )  ∈  CMetSp | 
						
							| 34 | 24 33 | eqeltrdi | ⊢ ( 𝐾  =  ℝ  →  ( ℂfld  ↾s  𝐾 )  ∈  CMetSp ) | 
						
							| 35 |  | oveq2 | ⊢ ( 𝐾  =  ℂ  →  ( ℂfld  ↾s  𝐾 )  =  ( ℂfld  ↾s  ℂ ) ) | 
						
							| 36 | 30 | ressid | ⊢ ( ℂfld  ∈  CMetSp  →  ( ℂfld  ↾s  ℂ )  =  ℂfld ) | 
						
							| 37 | 27 36 | ax-mp | ⊢ ( ℂfld  ↾s  ℂ )  =  ℂfld | 
						
							| 38 | 37 27 | eqeltri | ⊢ ( ℂfld  ↾s  ℂ )  ∈  CMetSp | 
						
							| 39 | 35 38 | eqeltrdi | ⊢ ( 𝐾  =  ℂ  →  ( ℂfld  ↾s  𝐾 )  ∈  CMetSp ) | 
						
							| 40 | 34 39 | jaoi | ⊢ ( ( 𝐾  =  ℝ  ∨  𝐾  =  ℂ )  →  ( ℂfld  ↾s  𝐾 )  ∈  CMetSp ) | 
						
							| 41 | 23 40 | syl | ⊢ ( 𝐾  ∈  { ℝ ,  ℂ }  →  ( ℂfld  ↾s  𝐾 )  ∈  CMetSp ) | 
						
							| 42 | 22 41 | impbid1 | ⊢ ( 𝑊  ∈  ℂPreHil  →  ( ( ℂfld  ↾s  𝐾 )  ∈  CMetSp  ↔  𝐾  ∈  { ℝ ,  ℂ } ) ) | 
						
							| 43 | 13 42 | bitrd | ⊢ ( 𝑊  ∈  ℂPreHil  →  ( 𝐹  ∈  CMetSp  ↔  𝐾  ∈  { ℝ ,  ℂ } ) ) | 
						
							| 44 | 43 | anbi2d | ⊢ ( 𝑊  ∈  ℂPreHil  →  ( ( 𝑊  ∈  CMetSp  ∧  𝐹  ∈  CMetSp )  ↔  ( 𝑊  ∈  CMetSp  ∧  𝐾  ∈  { ℝ ,  ℂ } ) ) ) | 
						
							| 45 | 11 44 | bitrd | ⊢ ( 𝑊  ∈  ℂPreHil  →  ( 𝑊  ∈  Ban  ↔  ( 𝑊  ∈  CMetSp  ∧  𝐾  ∈  { ℝ ,  ℂ } ) ) ) | 
						
							| 46 | 45 | pm5.32ri | ⊢ ( ( 𝑊  ∈  Ban  ∧  𝑊  ∈  ℂPreHil )  ↔  ( ( 𝑊  ∈  CMetSp  ∧  𝐾  ∈  { ℝ ,  ℂ } )  ∧  𝑊  ∈  ℂPreHil ) ) | 
						
							| 47 | 4 5 46 | 3bitr4ri | ⊢ ( ( 𝑊  ∈  Ban  ∧  𝑊  ∈  ℂPreHil )  ↔  ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil  ∧  𝐾  ∈  { ℝ ,  ℂ } ) ) | 
						
							| 48 | 3 47 | bitri | ⊢ ( 𝑊  ∈  ℂHil  ↔  ( 𝑊  ∈  CMetSp  ∧  𝑊  ∈  ℂPreHil  ∧  𝐾  ∈  { ℝ ,  ℂ } ) ) |