| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlress.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | hlress.k |  |-  K = ( Base ` F ) | 
						
							| 3 |  | ishl |  |-  ( W e. CHil <-> ( W e. Ban /\ W e. CPreHil ) ) | 
						
							| 4 |  | df-3an |  |-  ( ( W e. CMetSp /\ K e. { RR , CC } /\ W e. CPreHil ) <-> ( ( W e. CMetSp /\ K e. { RR , CC } ) /\ W e. CPreHil ) ) | 
						
							| 5 |  | 3ancomb |  |-  ( ( W e. CMetSp /\ W e. CPreHil /\ K e. { RR , CC } ) <-> ( W e. CMetSp /\ K e. { RR , CC } /\ W e. CPreHil ) ) | 
						
							| 6 |  | cphnvc |  |-  ( W e. CPreHil -> W e. NrmVec ) | 
						
							| 7 | 1 | isbn |  |-  ( W e. Ban <-> ( W e. NrmVec /\ W e. CMetSp /\ F e. CMetSp ) ) | 
						
							| 8 |  | 3anass |  |-  ( ( W e. NrmVec /\ W e. CMetSp /\ F e. CMetSp ) <-> ( W e. NrmVec /\ ( W e. CMetSp /\ F e. CMetSp ) ) ) | 
						
							| 9 | 7 8 | bitri |  |-  ( W e. Ban <-> ( W e. NrmVec /\ ( W e. CMetSp /\ F e. CMetSp ) ) ) | 
						
							| 10 | 9 | baib |  |-  ( W e. NrmVec -> ( W e. Ban <-> ( W e. CMetSp /\ F e. CMetSp ) ) ) | 
						
							| 11 | 6 10 | syl |  |-  ( W e. CPreHil -> ( W e. Ban <-> ( W e. CMetSp /\ F e. CMetSp ) ) ) | 
						
							| 12 | 1 2 | cphsca |  |-  ( W e. CPreHil -> F = ( CCfld |`s K ) ) | 
						
							| 13 | 12 | eleq1d |  |-  ( W e. CPreHil -> ( F e. CMetSp <-> ( CCfld |`s K ) e. CMetSp ) ) | 
						
							| 14 | 1 2 | cphsubrg |  |-  ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) | 
						
							| 15 |  | cphlvec |  |-  ( W e. CPreHil -> W e. LVec ) | 
						
							| 16 | 1 | lvecdrng |  |-  ( W e. LVec -> F e. DivRing ) | 
						
							| 17 | 15 16 | syl |  |-  ( W e. CPreHil -> F e. DivRing ) | 
						
							| 18 | 12 17 | eqeltrrd |  |-  ( W e. CPreHil -> ( CCfld |`s K ) e. DivRing ) | 
						
							| 19 |  | eqid |  |-  ( CCfld |`s K ) = ( CCfld |`s K ) | 
						
							| 20 | 19 | cncdrg |  |-  ( ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing /\ ( CCfld |`s K ) e. CMetSp ) -> K e. { RR , CC } ) | 
						
							| 21 | 20 | 3expia |  |-  ( ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing ) -> ( ( CCfld |`s K ) e. CMetSp -> K e. { RR , CC } ) ) | 
						
							| 22 | 14 18 21 | syl2anc |  |-  ( W e. CPreHil -> ( ( CCfld |`s K ) e. CMetSp -> K e. { RR , CC } ) ) | 
						
							| 23 |  | elpri |  |-  ( K e. { RR , CC } -> ( K = RR \/ K = CC ) ) | 
						
							| 24 |  | oveq2 |  |-  ( K = RR -> ( CCfld |`s K ) = ( CCfld |`s RR ) ) | 
						
							| 25 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 26 | 25 | recld2 |  |-  RR e. ( Clsd ` ( TopOpen ` CCfld ) ) | 
						
							| 27 |  | cncms |  |-  CCfld e. CMetSp | 
						
							| 28 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 29 |  | eqid |  |-  ( CCfld |`s RR ) = ( CCfld |`s RR ) | 
						
							| 30 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 31 | 29 30 25 | cmsss |  |-  ( ( CCfld e. CMetSp /\ RR C_ CC ) -> ( ( CCfld |`s RR ) e. CMetSp <-> RR e. ( Clsd ` ( TopOpen ` CCfld ) ) ) ) | 
						
							| 32 | 27 28 31 | mp2an |  |-  ( ( CCfld |`s RR ) e. CMetSp <-> RR e. ( Clsd ` ( TopOpen ` CCfld ) ) ) | 
						
							| 33 | 26 32 | mpbir |  |-  ( CCfld |`s RR ) e. CMetSp | 
						
							| 34 | 24 33 | eqeltrdi |  |-  ( K = RR -> ( CCfld |`s K ) e. CMetSp ) | 
						
							| 35 |  | oveq2 |  |-  ( K = CC -> ( CCfld |`s K ) = ( CCfld |`s CC ) ) | 
						
							| 36 | 30 | ressid |  |-  ( CCfld e. CMetSp -> ( CCfld |`s CC ) = CCfld ) | 
						
							| 37 | 27 36 | ax-mp |  |-  ( CCfld |`s CC ) = CCfld | 
						
							| 38 | 37 27 | eqeltri |  |-  ( CCfld |`s CC ) e. CMetSp | 
						
							| 39 | 35 38 | eqeltrdi |  |-  ( K = CC -> ( CCfld |`s K ) e. CMetSp ) | 
						
							| 40 | 34 39 | jaoi |  |-  ( ( K = RR \/ K = CC ) -> ( CCfld |`s K ) e. CMetSp ) | 
						
							| 41 | 23 40 | syl |  |-  ( K e. { RR , CC } -> ( CCfld |`s K ) e. CMetSp ) | 
						
							| 42 | 22 41 | impbid1 |  |-  ( W e. CPreHil -> ( ( CCfld |`s K ) e. CMetSp <-> K e. { RR , CC } ) ) | 
						
							| 43 | 13 42 | bitrd |  |-  ( W e. CPreHil -> ( F e. CMetSp <-> K e. { RR , CC } ) ) | 
						
							| 44 | 43 | anbi2d |  |-  ( W e. CPreHil -> ( ( W e. CMetSp /\ F e. CMetSp ) <-> ( W e. CMetSp /\ K e. { RR , CC } ) ) ) | 
						
							| 45 | 11 44 | bitrd |  |-  ( W e. CPreHil -> ( W e. Ban <-> ( W e. CMetSp /\ K e. { RR , CC } ) ) ) | 
						
							| 46 | 45 | pm5.32ri |  |-  ( ( W e. Ban /\ W e. CPreHil ) <-> ( ( W e. CMetSp /\ K e. { RR , CC } ) /\ W e. CPreHil ) ) | 
						
							| 47 | 4 5 46 | 3bitr4ri |  |-  ( ( W e. Ban /\ W e. CPreHil ) <-> ( W e. CMetSp /\ W e. CPreHil /\ K e. { RR , CC } ) ) | 
						
							| 48 | 3 47 | bitri |  |-  ( W e. CHil <-> ( W e. CMetSp /\ W e. CPreHil /\ K e. { RR , CC } ) ) |