| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlress.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | hlress.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 3 |  | hlcph | ⊢ ( 𝑊  ∈  ℂHil  →  𝑊  ∈  ℂPreHil ) | 
						
							| 4 | 1 2 | cphsubrg | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝐾  ∈  ( SubRing ‘ ℂfld ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝑊  ∈  ℂHil  →  𝐾  ∈  ( SubRing ‘ ℂfld ) ) | 
						
							| 6 | 1 2 | cphsca | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝐹  =  ( ℂfld  ↾s  𝐾 ) ) | 
						
							| 7 | 3 6 | syl | ⊢ ( 𝑊  ∈  ℂHil  →  𝐹  =  ( ℂfld  ↾s  𝐾 ) ) | 
						
							| 8 |  | cphlvec | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  LVec ) | 
						
							| 9 | 1 | lvecdrng | ⊢ ( 𝑊  ∈  LVec  →  𝐹  ∈  DivRing ) | 
						
							| 10 | 3 8 9 | 3syl | ⊢ ( 𝑊  ∈  ℂHil  →  𝐹  ∈  DivRing ) | 
						
							| 11 | 7 10 | eqeltrrd | ⊢ ( 𝑊  ∈  ℂHil  →  ( ℂfld  ↾s  𝐾 )  ∈  DivRing ) | 
						
							| 12 |  | hlbn | ⊢ ( 𝑊  ∈  ℂHil  →  𝑊  ∈  Ban ) | 
						
							| 13 | 1 | bnsca | ⊢ ( 𝑊  ∈  Ban  →  𝐹  ∈  CMetSp ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝑊  ∈  ℂHil  →  𝐹  ∈  CMetSp ) | 
						
							| 15 | 7 14 | eqeltrrd | ⊢ ( 𝑊  ∈  ℂHil  →  ( ℂfld  ↾s  𝐾 )  ∈  CMetSp ) | 
						
							| 16 | 5 11 15 | 3jca | ⊢ ( 𝑊  ∈  ℂHil  →  ( 𝐾  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  𝐾 )  ∈  DivRing  ∧  ( ℂfld  ↾s  𝐾 )  ∈  CMetSp ) ) |