Step |
Hyp |
Ref |
Expression |
1 |
|
hlress.f |
β’ πΉ = ( Scalar β π ) |
2 |
|
hlress.k |
β’ πΎ = ( Base β πΉ ) |
3 |
|
hlcph |
β’ ( π β βHil β π β βPreHil ) |
4 |
1 2
|
cphsubrg |
β’ ( π β βPreHil β πΎ β ( SubRing β βfld ) ) |
5 |
3 4
|
syl |
β’ ( π β βHil β πΎ β ( SubRing β βfld ) ) |
6 |
1 2
|
cphsca |
β’ ( π β βPreHil β πΉ = ( βfld βΎs πΎ ) ) |
7 |
3 6
|
syl |
β’ ( π β βHil β πΉ = ( βfld βΎs πΎ ) ) |
8 |
|
cphlvec |
β’ ( π β βPreHil β π β LVec ) |
9 |
1
|
lvecdrng |
β’ ( π β LVec β πΉ β DivRing ) |
10 |
3 8 9
|
3syl |
β’ ( π β βHil β πΉ β DivRing ) |
11 |
7 10
|
eqeltrrd |
β’ ( π β βHil β ( βfld βΎs πΎ ) β DivRing ) |
12 |
|
hlbn |
β’ ( π β βHil β π β Ban ) |
13 |
1
|
bnsca |
β’ ( π β Ban β πΉ β CMetSp ) |
14 |
12 13
|
syl |
β’ ( π β βHil β πΉ β CMetSp ) |
15 |
7 14
|
eqeltrrd |
β’ ( π β βHil β ( βfld βΎs πΎ ) β CMetSp ) |
16 |
5 11 15
|
3jca |
β’ ( π β βHil β ( πΎ β ( SubRing β βfld ) β§ ( βfld βΎs πΎ ) β DivRing β§ ( βfld βΎs πΎ ) β CMetSp ) ) |