| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlress.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | hlress.k |  |-  K = ( Base ` F ) | 
						
							| 3 |  | hlcph |  |-  ( W e. CHil -> W e. CPreHil ) | 
						
							| 4 | 1 2 | cphsubrg |  |-  ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( W e. CHil -> K e. ( SubRing ` CCfld ) ) | 
						
							| 6 | 1 2 | cphsca |  |-  ( W e. CPreHil -> F = ( CCfld |`s K ) ) | 
						
							| 7 | 3 6 | syl |  |-  ( W e. CHil -> F = ( CCfld |`s K ) ) | 
						
							| 8 |  | cphlvec |  |-  ( W e. CPreHil -> W e. LVec ) | 
						
							| 9 | 1 | lvecdrng |  |-  ( W e. LVec -> F e. DivRing ) | 
						
							| 10 | 3 8 9 | 3syl |  |-  ( W e. CHil -> F e. DivRing ) | 
						
							| 11 | 7 10 | eqeltrrd |  |-  ( W e. CHil -> ( CCfld |`s K ) e. DivRing ) | 
						
							| 12 |  | hlbn |  |-  ( W e. CHil -> W e. Ban ) | 
						
							| 13 | 1 | bnsca |  |-  ( W e. Ban -> F e. CMetSp ) | 
						
							| 14 | 12 13 | syl |  |-  ( W e. CHil -> F e. CMetSp ) | 
						
							| 15 | 7 14 | eqeltrrd |  |-  ( W e. CHil -> ( CCfld |`s K ) e. CMetSp ) | 
						
							| 16 | 5 11 15 | 3jca |  |-  ( W e. CHil -> ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing /\ ( CCfld |`s K ) e. CMetSp ) ) |