Description: The scalar field of a subcomplex Hilbert space is either RR or CC . (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlress.f | |- F = ( Scalar ` W ) | |
| hlress.k | |- K = ( Base ` F ) | ||
| Assertion | hlpr | |- ( W e. CHil -> K e. { RR , CC } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hlress.f | |- F = ( Scalar ` W ) | |
| 2 | hlress.k | |- K = ( Base ` F ) | |
| 3 | 1 2 | hlprlem | |- ( W e. CHil -> ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing /\ ( CCfld |`s K ) e. CMetSp ) ) | 
| 4 | eqid | |- ( CCfld |`s K ) = ( CCfld |`s K ) | |
| 5 | 4 | cncdrg |  |-  ( ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing /\ ( CCfld |`s K ) e. CMetSp ) -> K e. { RR , CC } ) | 
| 6 | 3 5 | syl |  |-  ( W e. CHil -> K e. { RR , CC } ) |