Metamath Proof Explorer


Theorem hoaddid1i

Description: Sum of a Hilbert space operator with the zero operator. (Contributed by NM, 15-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis hoaddid1.1 𝑇 : ℋ ⟶ ℋ
Assertion hoaddid1i ( 𝑇 +op 0hop ) = 𝑇

Proof

Step Hyp Ref Expression
1 hoaddid1.1 𝑇 : ℋ ⟶ ℋ
2 ho0f 0hop : ℋ ⟶ ℋ
3 hosval ( ( 𝑇 : ℋ ⟶ ℋ ∧ 0hop : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 +op 0hop ) ‘ 𝑥 ) = ( ( 𝑇𝑥 ) + ( 0hop𝑥 ) ) )
4 1 2 3 mp3an12 ( 𝑥 ∈ ℋ → ( ( 𝑇 +op 0hop ) ‘ 𝑥 ) = ( ( 𝑇𝑥 ) + ( 0hop𝑥 ) ) )
5 ho0val ( 𝑥 ∈ ℋ → ( 0hop𝑥 ) = 0 )
6 5 oveq2d ( 𝑥 ∈ ℋ → ( ( 𝑇𝑥 ) + ( 0hop𝑥 ) ) = ( ( 𝑇𝑥 ) + 0 ) )
7 1 ffvelrni ( 𝑥 ∈ ℋ → ( 𝑇𝑥 ) ∈ ℋ )
8 ax-hvaddid ( ( 𝑇𝑥 ) ∈ ℋ → ( ( 𝑇𝑥 ) + 0 ) = ( 𝑇𝑥 ) )
9 7 8 syl ( 𝑥 ∈ ℋ → ( ( 𝑇𝑥 ) + 0 ) = ( 𝑇𝑥 ) )
10 4 6 9 3eqtrd ( 𝑥 ∈ ℋ → ( ( 𝑇 +op 0hop ) ‘ 𝑥 ) = ( 𝑇𝑥 ) )
11 10 rgen 𝑥 ∈ ℋ ( ( 𝑇 +op 0hop ) ‘ 𝑥 ) = ( 𝑇𝑥 )
12 1 2 hoaddcli ( 𝑇 +op 0hop ) : ℋ ⟶ ℋ
13 12 1 hoeqi ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 +op 0hop ) ‘ 𝑥 ) = ( 𝑇𝑥 ) ↔ ( 𝑇 +op 0hop ) = 𝑇 )
14 11 13 mpbi ( 𝑇 +op 0hop ) = 𝑇