Metamath Proof Explorer


Theorem iccss

Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 20-Feb-2015)

Ref Expression
Assertion iccss ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴𝐶𝐷𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) )

Proof

Step Hyp Ref Expression
1 rexr ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* )
2 rexr ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* )
3 1 2 anim12i ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) )
4 df-icc [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧𝑦 ) } )
5 xrletr ( ( 𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ* ) → ( ( 𝐴𝐶𝐶𝑤 ) → 𝐴𝑤 ) )
6 xrletr ( ( 𝑤 ∈ ℝ*𝐷 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝑤𝐷𝐷𝐵 ) → 𝑤𝐵 ) )
7 4 4 5 6 ixxss12 ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ ( 𝐴𝐶𝐷𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) )
8 3 7 sylan ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴𝐶𝐷𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) )