Metamath Proof Explorer


Theorem icheq

Description: In an equality of setvar variables, the setvar variables are interchangeable. (Contributed by AV, 29-Jul-2023)

Ref Expression
Assertion icheq [ 𝑥𝑦 ] 𝑥 = 𝑦

Proof

Step Hyp Ref Expression
1 equsb3r ( [ 𝑧 / 𝑦 ] 𝑥 = 𝑦𝑥 = 𝑧 )
2 1 2sbbii ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝑥 = 𝑦 ↔ [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝑥 = 𝑧 )
3 equsb3 ( [ 𝑦 / 𝑥 ] 𝑥 = 𝑧𝑦 = 𝑧 )
4 3 sbbii ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝑥 = 𝑧 ↔ [ 𝑥 / 𝑧 ] 𝑦 = 𝑧 )
5 equsb3r ( [ 𝑥 / 𝑧 ] 𝑦 = 𝑧𝑦 = 𝑥 )
6 equcom ( 𝑦 = 𝑥𝑥 = 𝑦 )
7 5 6 bitri ( [ 𝑥 / 𝑧 ] 𝑦 = 𝑧𝑥 = 𝑦 )
8 2 4 7 3bitri ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝑥 = 𝑦𝑥 = 𝑦 )
9 8 gen2 𝑥𝑦 ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝑥 = 𝑦𝑥 = 𝑦 )
10 df-ich ( [ 𝑥𝑦 ] 𝑥 = 𝑦 ↔ ∀ 𝑥𝑦 ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝑥 = 𝑦𝑥 = 𝑦 ) )
11 9 10 mpbir [ 𝑥𝑦 ] 𝑥 = 𝑦