Step |
Hyp |
Ref |
Expression |
1 |
|
equsb3r |
⊢ ( [ 𝑧 / 𝑦 ] 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) |
2 |
1
|
2sbbii |
⊢ ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝑥 = 𝑦 ↔ [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝑥 = 𝑧 ) |
3 |
|
equsb3 |
⊢ ( [ 𝑦 / 𝑥 ] 𝑥 = 𝑧 ↔ 𝑦 = 𝑧 ) |
4 |
3
|
sbbii |
⊢ ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝑥 = 𝑧 ↔ [ 𝑥 / 𝑧 ] 𝑦 = 𝑧 ) |
5 |
|
equsb3r |
⊢ ( [ 𝑥 / 𝑧 ] 𝑦 = 𝑧 ↔ 𝑦 = 𝑥 ) |
6 |
|
equcom |
⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) |
7 |
5 6
|
bitri |
⊢ ( [ 𝑥 / 𝑧 ] 𝑦 = 𝑧 ↔ 𝑥 = 𝑦 ) |
8 |
2 4 7
|
3bitri |
⊢ ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝑥 = 𝑦 ↔ 𝑥 = 𝑦 ) |
9 |
8
|
gen2 |
⊢ ∀ 𝑥 ∀ 𝑦 ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝑥 = 𝑦 ↔ 𝑥 = 𝑦 ) |
10 |
|
df-ich |
⊢ ( [ 𝑥 ⇄ 𝑦 ] 𝑥 = 𝑦 ↔ ∀ 𝑥 ∀ 𝑦 ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝑥 = 𝑦 ↔ 𝑥 = 𝑦 ) ) |
11 |
9 10
|
mpbir |
⊢ [ 𝑥 ⇄ 𝑦 ] 𝑥 = 𝑦 |