| Step |
Hyp |
Ref |
Expression |
| 1 |
|
equsb3r |
|- ( [ z / y ] x = y <-> x = z ) |
| 2 |
1
|
2sbbii |
|- ( [ x / z ] [ y / x ] [ z / y ] x = y <-> [ x / z ] [ y / x ] x = z ) |
| 3 |
|
equsb3 |
|- ( [ y / x ] x = z <-> y = z ) |
| 4 |
3
|
sbbii |
|- ( [ x / z ] [ y / x ] x = z <-> [ x / z ] y = z ) |
| 5 |
|
equsb3r |
|- ( [ x / z ] y = z <-> y = x ) |
| 6 |
|
equcom |
|- ( y = x <-> x = y ) |
| 7 |
5 6
|
bitri |
|- ( [ x / z ] y = z <-> x = y ) |
| 8 |
2 4 7
|
3bitri |
|- ( [ x / z ] [ y / x ] [ z / y ] x = y <-> x = y ) |
| 9 |
8
|
gen2 |
|- A. x A. y ( [ x / z ] [ y / x ] [ z / y ] x = y <-> x = y ) |
| 10 |
|
df-ich |
|- ( [ x <> y ] x = y <-> A. x A. y ( [ x / z ] [ y / x ] [ z / y ] x = y <-> x = y ) ) |
| 11 |
9 10
|
mpbir |
|- [ x <> y ] x = y |