| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfa1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 Ⅎ 𝑥 𝜑 |
| 2 |
|
sb6 |
⊢ ( [ 𝑏 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑏 → 𝜑 ) ) |
| 3 |
2
|
a1i |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( [ 𝑏 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑏 → 𝜑 ) ) ) |
| 4 |
2
|
biimpri |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑏 → 𝜑 ) → [ 𝑏 / 𝑦 ] 𝜑 ) |
| 5 |
4
|
axc4i |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑏 → 𝜑 ) → ∀ 𝑦 [ 𝑏 / 𝑦 ] 𝜑 ) |
| 6 |
3 5
|
biimtrdi |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( [ 𝑏 / 𝑦 ] 𝜑 → ∀ 𝑦 [ 𝑏 / 𝑦 ] 𝜑 ) ) |
| 7 |
1 6
|
nf5d |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → Ⅎ 𝑦 [ 𝑏 / 𝑦 ] 𝜑 ) |
| 8 |
1 7
|
nfim1 |
⊢ Ⅎ 𝑦 ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → [ 𝑏 / 𝑦 ] 𝜑 ) |
| 9 |
|
sbequ12 |
⊢ ( 𝑦 = 𝑏 → ( 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) ) |
| 10 |
9
|
imbi2d |
⊢ ( 𝑦 = 𝑏 → ( ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → 𝜑 ) ↔ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → [ 𝑏 / 𝑦 ] 𝜑 ) ) ) |
| 11 |
8 10
|
equsalv |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑏 → ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → 𝜑 ) ) ↔ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → [ 𝑏 / 𝑦 ] 𝜑 ) ) |
| 12 |
11
|
bicomi |
⊢ ( ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → [ 𝑏 / 𝑦 ] 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 = 𝑏 → ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → 𝜑 ) ) ) |
| 13 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 = 𝑏 |
| 14 |
|
nfnf1 |
⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝜑 |
| 15 |
14
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑦 Ⅎ 𝑥 𝜑 |
| 16 |
|
sp |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → Ⅎ 𝑥 𝜑 ) |
| 17 |
15 16
|
nfim1 |
⊢ Ⅎ 𝑥 ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → 𝜑 ) |
| 18 |
13 17
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑦 = 𝑏 → ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → 𝜑 ) ) |
| 19 |
18
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑏 → ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → 𝜑 ) ) |
| 20 |
12 19
|
nfxfr |
⊢ Ⅎ 𝑥 ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → [ 𝑏 / 𝑦 ] 𝜑 ) |
| 21 |
|
pm5.5 |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → [ 𝑏 / 𝑦 ] 𝜑 ) ↔ [ 𝑏 / 𝑦 ] 𝜑 ) ) |
| 22 |
15 21
|
nfbidf |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( Ⅎ 𝑥 ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → [ 𝑏 / 𝑦 ] 𝜑 ) ↔ Ⅎ 𝑥 [ 𝑏 / 𝑦 ] 𝜑 ) ) |
| 23 |
20 22
|
mpbii |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → Ⅎ 𝑥 [ 𝑏 / 𝑦 ] 𝜑 ) |
| 24 |
|
sbft |
⊢ ( Ⅎ 𝑥 [ 𝑏 / 𝑦 ] 𝜑 → ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) ) |
| 25 |
23 24
|
syl |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) ) |