Step |
Hyp |
Ref |
Expression |
1 |
|
nfa1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 Ⅎ 𝑥 𝜑 |
2 |
|
sb6 |
⊢ ( [ 𝑏 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑏 → 𝜑 ) ) |
3 |
2
|
a1i |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( [ 𝑏 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑏 → 𝜑 ) ) ) |
4 |
2
|
biimpri |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑏 → 𝜑 ) → [ 𝑏 / 𝑦 ] 𝜑 ) |
5 |
4
|
axc4i |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑏 → 𝜑 ) → ∀ 𝑦 [ 𝑏 / 𝑦 ] 𝜑 ) |
6 |
3 5
|
syl6bi |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( [ 𝑏 / 𝑦 ] 𝜑 → ∀ 𝑦 [ 𝑏 / 𝑦 ] 𝜑 ) ) |
7 |
1 6
|
nf5d |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → Ⅎ 𝑦 [ 𝑏 / 𝑦 ] 𝜑 ) |
8 |
1 7
|
nfim1 |
⊢ Ⅎ 𝑦 ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → [ 𝑏 / 𝑦 ] 𝜑 ) |
9 |
|
sbequ12 |
⊢ ( 𝑦 = 𝑏 → ( 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑦 = 𝑏 → ( ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → 𝜑 ) ↔ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → [ 𝑏 / 𝑦 ] 𝜑 ) ) ) |
11 |
8 10
|
equsalv |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑏 → ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → 𝜑 ) ) ↔ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → [ 𝑏 / 𝑦 ] 𝜑 ) ) |
12 |
11
|
bicomi |
⊢ ( ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → [ 𝑏 / 𝑦 ] 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 = 𝑏 → ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → 𝜑 ) ) ) |
13 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 = 𝑏 |
14 |
|
nfnf1 |
⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝜑 |
15 |
14
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑦 Ⅎ 𝑥 𝜑 |
16 |
|
sp |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → Ⅎ 𝑥 𝜑 ) |
17 |
15 16
|
nfim1 |
⊢ Ⅎ 𝑥 ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → 𝜑 ) |
18 |
13 17
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑦 = 𝑏 → ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → 𝜑 ) ) |
19 |
18
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑏 → ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → 𝜑 ) ) |
20 |
12 19
|
nfxfr |
⊢ Ⅎ 𝑥 ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → [ 𝑏 / 𝑦 ] 𝜑 ) |
21 |
|
pm5.5 |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → [ 𝑏 / 𝑦 ] 𝜑 ) ↔ [ 𝑏 / 𝑦 ] 𝜑 ) ) |
22 |
15 21
|
nfbidf |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( Ⅎ 𝑥 ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → [ 𝑏 / 𝑦 ] 𝜑 ) ↔ Ⅎ 𝑥 [ 𝑏 / 𝑦 ] 𝜑 ) ) |
23 |
20 22
|
mpbii |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → Ⅎ 𝑥 [ 𝑏 / 𝑦 ] 𝜑 ) |
24 |
|
sbft |
⊢ ( Ⅎ 𝑥 [ 𝑏 / 𝑦 ] 𝜑 → ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) ) |
25 |
23 24
|
syl |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) ) |