Step |
Hyp |
Ref |
Expression |
1 |
|
nfnf1 |
⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝜑 |
2 |
1
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑦 Ⅎ 𝑥 𝜑 |
3 |
|
nfich1 |
⊢ Ⅎ 𝑥 [ 𝑥 ⇄ 𝑦 ] 𝜑 |
4 |
2 3
|
nfan |
⊢ Ⅎ 𝑥 ( ∀ 𝑦 Ⅎ 𝑥 𝜑 ∧ [ 𝑥 ⇄ 𝑦 ] 𝜑 ) |
5 |
|
dfich2 |
⊢ ( [ 𝑥 ⇄ 𝑦 ] 𝜑 ↔ ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜑 ) ) |
6 |
|
ichnfimlem |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) ) |
7 |
|
ichnfimlem |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑦 ] 𝜑 ) ) |
8 |
6 7
|
bibi12d |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜑 ) ↔ ( [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑦 ] 𝜑 ) ) ) |
9 |
|
bicom1 |
⊢ ( ( [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑦 ] 𝜑 ) → ( [ 𝑎 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) ) |
10 |
8 9
|
syl6bi |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜑 ) → ( [ 𝑎 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) ) ) |
11 |
10
|
2alimdv |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜑 ) → ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) ) ) |
12 |
5 11
|
syl5bi |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( [ 𝑥 ⇄ 𝑦 ] 𝜑 → ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) ) ) |
13 |
12
|
imp |
⊢ ( ( ∀ 𝑦 Ⅎ 𝑥 𝜑 ∧ [ 𝑥 ⇄ 𝑦 ] 𝜑 ) → ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) ) |
14 |
|
sbnf2 |
⊢ ( Ⅎ 𝑦 𝜑 ↔ ∀ 𝑎 ∀ 𝑏 ( [ 𝑎 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) ) |
15 |
13 14
|
sylibr |
⊢ ( ( ∀ 𝑦 Ⅎ 𝑥 𝜑 ∧ [ 𝑥 ⇄ 𝑦 ] 𝜑 ) → Ⅎ 𝑦 𝜑 ) |
16 |
4 15
|
alrimi |
⊢ ( ( ∀ 𝑦 Ⅎ 𝑥 𝜑 ∧ [ 𝑥 ⇄ 𝑦 ] 𝜑 ) → ∀ 𝑥 Ⅎ 𝑦 𝜑 ) |