Description: If x and y are interchangeable in ph , they are both free or both not free in ph . (Contributed by Wolf Lammen, 6-Aug-2023) (Revised by AV, 23-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ichnfb | ⊢ ( [ 𝑥 ⇄ 𝑦 ] 𝜑 → ( ∀ 𝑥 Ⅎ 𝑦 𝜑 ↔ ∀ 𝑦 Ⅎ 𝑥 𝜑 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ichcom | ⊢ ( [ 𝑥 ⇄ 𝑦 ] 𝜑 ↔ [ 𝑦 ⇄ 𝑥 ] 𝜑 ) | |
| 2 | ichnfim | ⊢ ( ( ∀ 𝑥 Ⅎ 𝑦 𝜑 ∧ [ 𝑦 ⇄ 𝑥 ] 𝜑 ) → ∀ 𝑦 Ⅎ 𝑥 𝜑 ) | |
| 3 | 1 2 | sylan2b | ⊢ ( ( ∀ 𝑥 Ⅎ 𝑦 𝜑 ∧ [ 𝑥 ⇄ 𝑦 ] 𝜑 ) → ∀ 𝑦 Ⅎ 𝑥 𝜑 ) | 
| 4 | 3 | expcom | ⊢ ( [ 𝑥 ⇄ 𝑦 ] 𝜑 → ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ∀ 𝑦 Ⅎ 𝑥 𝜑 ) ) | 
| 5 | ichnfim | ⊢ ( ( ∀ 𝑦 Ⅎ 𝑥 𝜑 ∧ [ 𝑥 ⇄ 𝑦 ] 𝜑 ) → ∀ 𝑥 Ⅎ 𝑦 𝜑 ) | |
| 6 | 5 | expcom | ⊢ ( [ 𝑥 ⇄ 𝑦 ] 𝜑 → ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ∀ 𝑥 Ⅎ 𝑦 𝜑 ) ) | 
| 7 | 4 6 | impbid | ⊢ ( [ 𝑥 ⇄ 𝑦 ] 𝜑 → ( ∀ 𝑥 Ⅎ 𝑦 𝜑 ↔ ∀ 𝑦 Ⅎ 𝑥 𝜑 ) ) |