Metamath Proof Explorer


Theorem ichal

Description: Move a universal quantifier inside interchangeability. (Contributed by SN, 30-Aug-2023)

Ref Expression
Assertion ichal ( ∀ 𝑥 [ 𝑎𝑏 ] 𝜑 → [ 𝑎𝑏 ] ∀ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 ax-11 ( ∀ 𝑥𝑎𝑏 ( [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜑𝜑 ) → ∀ 𝑎𝑥𝑏 ( [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜑𝜑 ) )
2 ax-11 ( ∀ 𝑥𝑏 ( [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜑𝜑 ) → ∀ 𝑏𝑥 ( [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜑𝜑 ) )
3 2 alimi ( ∀ 𝑎𝑥𝑏 ( [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜑𝜑 ) → ∀ 𝑎𝑏𝑥 ( [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜑𝜑 ) )
4 sbal ( [ 𝑢 / 𝑏 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑢 / 𝑏 ] 𝜑 )
5 4 2sbbii ( [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] ∀ 𝑥 𝜑 ↔ [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] ∀ 𝑥 [ 𝑢 / 𝑏 ] 𝜑 )
6 sbal ( [ 𝑏 / 𝑎 ] ∀ 𝑥 [ 𝑢 / 𝑏 ] 𝜑 ↔ ∀ 𝑥 [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜑 )
7 6 sbbii ( [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] ∀ 𝑥 [ 𝑢 / 𝑏 ] 𝜑 ↔ [ 𝑎 / 𝑢 ] ∀ 𝑥 [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜑 )
8 sbal ( [ 𝑎 / 𝑢 ] ∀ 𝑥 [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜑 ↔ ∀ 𝑥 [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜑 )
9 5 7 8 3bitri ( [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜑 )
10 albi ( ∀ 𝑥 ( [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜑𝜑 ) → ( ∀ 𝑥 [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜑 ↔ ∀ 𝑥 𝜑 ) )
11 9 10 syl5bb ( ∀ 𝑥 ( [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜑𝜑 ) → ( [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝜑 ) )
12 11 2alimi ( ∀ 𝑎𝑏𝑥 ( [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜑𝜑 ) → ∀ 𝑎𝑏 ( [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝜑 ) )
13 1 3 12 3syl ( ∀ 𝑥𝑎𝑏 ( [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜑𝜑 ) → ∀ 𝑎𝑏 ( [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝜑 ) )
14 df-ich ( [ 𝑎𝑏 ] 𝜑 ↔ ∀ 𝑎𝑏 ( [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜑𝜑 ) )
15 14 albii ( ∀ 𝑥 [ 𝑎𝑏 ] 𝜑 ↔ ∀ 𝑥𝑎𝑏 ( [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] 𝜑𝜑 ) )
16 df-ich ( [ 𝑎𝑏 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑎𝑏 ( [ 𝑎 / 𝑢 ] [ 𝑏 / 𝑎 ] [ 𝑢 / 𝑏 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝜑 ) )
17 13 15 16 3imtr4i ( ∀ 𝑥 [ 𝑎𝑏 ] 𝜑 → [ 𝑎𝑏 ] ∀ 𝑥 𝜑 )