| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-11 |  |-  ( A. x A. a A. b ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) -> A. a A. x A. b ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) ) | 
						
							| 2 |  | ax-11 |  |-  ( A. x A. b ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) -> A. b A. x ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) ) | 
						
							| 3 | 2 | alimi |  |-  ( A. a A. x A. b ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) -> A. a A. b A. x ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) ) | 
						
							| 4 |  | sbal |  |-  ( [ u / b ] A. x ph <-> A. x [ u / b ] ph ) | 
						
							| 5 | 4 | 2sbbii |  |-  ( [ a / u ] [ b / a ] [ u / b ] A. x ph <-> [ a / u ] [ b / a ] A. x [ u / b ] ph ) | 
						
							| 6 |  | sbal |  |-  ( [ b / a ] A. x [ u / b ] ph <-> A. x [ b / a ] [ u / b ] ph ) | 
						
							| 7 | 6 | sbbii |  |-  ( [ a / u ] [ b / a ] A. x [ u / b ] ph <-> [ a / u ] A. x [ b / a ] [ u / b ] ph ) | 
						
							| 8 |  | sbal |  |-  ( [ a / u ] A. x [ b / a ] [ u / b ] ph <-> A. x [ a / u ] [ b / a ] [ u / b ] ph ) | 
						
							| 9 | 5 7 8 | 3bitri |  |-  ( [ a / u ] [ b / a ] [ u / b ] A. x ph <-> A. x [ a / u ] [ b / a ] [ u / b ] ph ) | 
						
							| 10 |  | albi |  |-  ( A. x ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) -> ( A. x [ a / u ] [ b / a ] [ u / b ] ph <-> A. x ph ) ) | 
						
							| 11 | 9 10 | bitrid |  |-  ( A. x ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) -> ( [ a / u ] [ b / a ] [ u / b ] A. x ph <-> A. x ph ) ) | 
						
							| 12 | 11 | 2alimi |  |-  ( A. a A. b A. x ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) -> A. a A. b ( [ a / u ] [ b / a ] [ u / b ] A. x ph <-> A. x ph ) ) | 
						
							| 13 | 1 3 12 | 3syl |  |-  ( A. x A. a A. b ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) -> A. a A. b ( [ a / u ] [ b / a ] [ u / b ] A. x ph <-> A. x ph ) ) | 
						
							| 14 |  | df-ich |  |-  ( [ a <> b ] ph <-> A. a A. b ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) ) | 
						
							| 15 | 14 | albii |  |-  ( A. x [ a <> b ] ph <-> A. x A. a A. b ( [ a / u ] [ b / a ] [ u / b ] ph <-> ph ) ) | 
						
							| 16 |  | df-ich |  |-  ( [ a <> b ] A. x ph <-> A. a A. b ( [ a / u ] [ b / a ] [ u / b ] A. x ph <-> A. x ph ) ) | 
						
							| 17 | 13 15 16 | 3imtr4i |  |-  ( A. x [ a <> b ] ph -> [ a <> b ] A. x ph ) |