Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Unordered pairs
Interchangeable setvar variables
ichal
Next ⟩
ich2al
Metamath Proof Explorer
Ascii
Unicode
Theorem
ichal
Description:
Move a universal quantifier inside interchangeability.
(Contributed by
SN
, 30-Aug-2023)
Ref
Expression
Assertion
ichal
⊢
∀
x
a
⇄
b
φ
→
a
⇄
b
∀
x
φ
Proof
Step
Hyp
Ref
Expression
1
ax-11
⊢
∀
x
∀
a
∀
b
a
u
b
a
u
b
φ
↔
φ
→
∀
a
∀
x
∀
b
a
u
b
a
u
b
φ
↔
φ
2
ax-11
⊢
∀
x
∀
b
a
u
b
a
u
b
φ
↔
φ
→
∀
b
∀
x
a
u
b
a
u
b
φ
↔
φ
3
2
alimi
⊢
∀
a
∀
x
∀
b
a
u
b
a
u
b
φ
↔
φ
→
∀
a
∀
b
∀
x
a
u
b
a
u
b
φ
↔
φ
4
sbal
⊢
u
b
∀
x
φ
↔
∀
x
u
b
φ
5
4
2sbbii
⊢
a
u
b
a
u
b
∀
x
φ
↔
a
u
b
a
∀
x
u
b
φ
6
sbal
⊢
b
a
∀
x
u
b
φ
↔
∀
x
b
a
u
b
φ
7
6
sbbii
⊢
a
u
b
a
∀
x
u
b
φ
↔
a
u
∀
x
b
a
u
b
φ
8
sbal
⊢
a
u
∀
x
b
a
u
b
φ
↔
∀
x
a
u
b
a
u
b
φ
9
5
7
8
3bitri
⊢
a
u
b
a
u
b
∀
x
φ
↔
∀
x
a
u
b
a
u
b
φ
10
albi
⊢
∀
x
a
u
b
a
u
b
φ
↔
φ
→
∀
x
a
u
b
a
u
b
φ
↔
∀
x
φ
11
9
10
syl5bb
⊢
∀
x
a
u
b
a
u
b
φ
↔
φ
→
a
u
b
a
u
b
∀
x
φ
↔
∀
x
φ
12
11
2alimi
⊢
∀
a
∀
b
∀
x
a
u
b
a
u
b
φ
↔
φ
→
∀
a
∀
b
a
u
b
a
u
b
∀
x
φ
↔
∀
x
φ
13
1
3
12
3syl
⊢
∀
x
∀
a
∀
b
a
u
b
a
u
b
φ
↔
φ
→
∀
a
∀
b
a
u
b
a
u
b
∀
x
φ
↔
∀
x
φ
14
df-ich
⊢
a
⇄
b
φ
↔
∀
a
∀
b
a
u
b
a
u
b
φ
↔
φ
15
14
albii
⊢
∀
x
a
⇄
b
φ
↔
∀
x
∀
a
∀
b
a
u
b
a
u
b
φ
↔
φ
16
df-ich
⊢
a
⇄
b
∀
x
φ
↔
∀
a
∀
b
a
u
b
a
u
b
∀
x
φ
↔
∀
x
φ
17
13
15
16
3imtr4i
⊢
∀
x
a
⇄
b
φ
→
a
⇄
b
∀
x
φ