Metamath Proof Explorer


Theorem ichal

Description: Move a universal quantifier inside interchangeability. (Contributed by SN, 30-Aug-2023)

Ref Expression
Assertion ichal x a b φ a b x φ

Proof

Step Hyp Ref Expression
1 ax-11 x a b a u b a u b φ φ a x b a u b a u b φ φ
2 ax-11 x b a u b a u b φ φ b x a u b a u b φ φ
3 2 alimi a x b a u b a u b φ φ a b x a u b a u b φ φ
4 sbal u b x φ x u b φ
5 4 2sbbii a u b a u b x φ a u b a x u b φ
6 sbal b a x u b φ x b a u b φ
7 6 sbbii a u b a x u b φ a u x b a u b φ
8 sbal a u x b a u b φ x a u b a u b φ
9 5 7 8 3bitri a u b a u b x φ x a u b a u b φ
10 albi x a u b a u b φ φ x a u b a u b φ x φ
11 9 10 syl5bb x a u b a u b φ φ a u b a u b x φ x φ
12 11 2alimi a b x a u b a u b φ φ a b a u b a u b x φ x φ
13 1 3 12 3syl x a b a u b a u b φ φ a b a u b a u b x φ x φ
14 df-ich a b φ a b a u b a u b φ φ
15 14 albii x a b φ x a b a u b a u b φ φ
16 df-ich a b x φ a b a u b a u b x φ x φ
17 13 15 16 3imtr4i x a b φ a b x φ