Metamath Proof Explorer


Theorem ichnfb

Description: If x and y are interchangeable in ph , they are both free or both not free in ph . (Contributed by Wolf Lammen, 6-Aug-2023) (Revised by AV, 23-Sep-2023)

Ref Expression
Assertion ichnfb
|- ( [ x <> y ] ph -> ( A. x F/ y ph <-> A. y F/ x ph ) )

Proof

Step Hyp Ref Expression
1 ichcom
 |-  ( [ x <> y ] ph <-> [ y <> x ] ph )
2 ichnfim
 |-  ( ( A. x F/ y ph /\ [ y <> x ] ph ) -> A. y F/ x ph )
3 1 2 sylan2b
 |-  ( ( A. x F/ y ph /\ [ x <> y ] ph ) -> A. y F/ x ph )
4 3 expcom
 |-  ( [ x <> y ] ph -> ( A. x F/ y ph -> A. y F/ x ph ) )
5 ichnfim
 |-  ( ( A. y F/ x ph /\ [ x <> y ] ph ) -> A. x F/ y ph )
6 5 expcom
 |-  ( [ x <> y ] ph -> ( A. y F/ x ph -> A. x F/ y ph ) )
7 4 6 impbid
 |-  ( [ x <> y ] ph -> ( A. x F/ y ph <-> A. y F/ x ph ) )