| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfnf1 |
|- F/ x F/ x ph |
| 2 |
1
|
nfal |
|- F/ x A. y F/ x ph |
| 3 |
|
nfich1 |
|- F/ x [ x <> y ] ph |
| 4 |
2 3
|
nfan |
|- F/ x ( A. y F/ x ph /\ [ x <> y ] ph ) |
| 5 |
|
dfich2 |
|- ( [ x <> y ] ph <-> A. a A. b ( [ a / x ] [ b / y ] ph <-> [ b / x ] [ a / y ] ph ) ) |
| 6 |
|
ichnfimlem |
|- ( A. y F/ x ph -> ( [ a / x ] [ b / y ] ph <-> [ b / y ] ph ) ) |
| 7 |
|
ichnfimlem |
|- ( A. y F/ x ph -> ( [ b / x ] [ a / y ] ph <-> [ a / y ] ph ) ) |
| 8 |
6 7
|
bibi12d |
|- ( A. y F/ x ph -> ( ( [ a / x ] [ b / y ] ph <-> [ b / x ] [ a / y ] ph ) <-> ( [ b / y ] ph <-> [ a / y ] ph ) ) ) |
| 9 |
|
bicom1 |
|- ( ( [ b / y ] ph <-> [ a / y ] ph ) -> ( [ a / y ] ph <-> [ b / y ] ph ) ) |
| 10 |
8 9
|
biimtrdi |
|- ( A. y F/ x ph -> ( ( [ a / x ] [ b / y ] ph <-> [ b / x ] [ a / y ] ph ) -> ( [ a / y ] ph <-> [ b / y ] ph ) ) ) |
| 11 |
10
|
2alimdv |
|- ( A. y F/ x ph -> ( A. a A. b ( [ a / x ] [ b / y ] ph <-> [ b / x ] [ a / y ] ph ) -> A. a A. b ( [ a / y ] ph <-> [ b / y ] ph ) ) ) |
| 12 |
5 11
|
biimtrid |
|- ( A. y F/ x ph -> ( [ x <> y ] ph -> A. a A. b ( [ a / y ] ph <-> [ b / y ] ph ) ) ) |
| 13 |
12
|
imp |
|- ( ( A. y F/ x ph /\ [ x <> y ] ph ) -> A. a A. b ( [ a / y ] ph <-> [ b / y ] ph ) ) |
| 14 |
|
sbnf2 |
|- ( F/ y ph <-> A. a A. b ( [ a / y ] ph <-> [ b / y ] ph ) ) |
| 15 |
13 14
|
sylibr |
|- ( ( A. y F/ x ph /\ [ x <> y ] ph ) -> F/ y ph ) |
| 16 |
4 15
|
alrimi |
|- ( ( A. y F/ x ph /\ [ x <> y ] ph ) -> A. x F/ y ph ) |