| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1eluzge0 |
⊢ 1 ∈ ( ℤ≥ ‘ 0 ) |
| 2 |
|
fzss1 |
⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) |
| 4 |
|
2z |
⊢ 2 ∈ ℤ |
| 5 |
4
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 2 ∈ ℤ ) |
| 6 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 𝑁 ∈ ℤ ) |
| 8 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 2 ≤ 𝑁 ) |
| 9 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) ) |
| 10 |
5 7 8 9
|
syl3anbrc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 11 |
|
ige2m1fz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 − 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 13 |
3 12
|
sselid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ( 0 ... 𝑁 ) ) |