Metamath Proof Explorer


Theorem iinfprg

Description: Indexed intersection of functions with an unordered pair index. (Contributed by Zhi Wang, 31-Oct-2025)

Ref Expression
Assertion iinfprg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝑥 ∈ ( dom 𝐴 ∩ dom 𝐵 ) ↦ ( ( 𝐴𝑥 ) ∩ ( 𝐵𝑥 ) ) ) = ( 𝑥 𝑦 ∈ { 𝐴 , 𝐵 } dom 𝑦 𝑦 ∈ { 𝐴 , 𝐵 } ( 𝑦𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 dmeq ( 𝑦 = 𝐴 → dom 𝑦 = dom 𝐴 )
2 dmeq ( 𝑦 = 𝐵 → dom 𝑦 = dom 𝐵 )
3 1 2 iinxprg ( ( 𝐴𝑉𝐵𝑊 ) → 𝑦 ∈ { 𝐴 , 𝐵 } dom 𝑦 = ( dom 𝐴 ∩ dom 𝐵 ) )
4 fveq1 ( 𝑦 = 𝐴 → ( 𝑦𝑥 ) = ( 𝐴𝑥 ) )
5 fveq1 ( 𝑦 = 𝐵 → ( 𝑦𝑥 ) = ( 𝐵𝑥 ) )
6 4 5 iinxprg ( ( 𝐴𝑉𝐵𝑊 ) → 𝑦 ∈ { 𝐴 , 𝐵 } ( 𝑦𝑥 ) = ( ( 𝐴𝑥 ) ∩ ( 𝐵𝑥 ) ) )
7 3 6 mpteq12dv ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝑥 𝑦 ∈ { 𝐴 , 𝐵 } dom 𝑦 𝑦 ∈ { 𝐴 , 𝐵 } ( 𝑦𝑥 ) ) = ( 𝑥 ∈ ( dom 𝐴 ∩ dom 𝐵 ) ↦ ( ( 𝐴𝑥 ) ∩ ( 𝐵𝑥 ) ) ) )
8 7 eqcomd ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝑥 ∈ ( dom 𝐴 ∩ dom 𝐵 ) ↦ ( ( 𝐴𝑥 ) ∩ ( 𝐵𝑥 ) ) ) = ( 𝑥 𝑦 ∈ { 𝐴 , 𝐵 } dom 𝑦 𝑦 ∈ { 𝐴 , 𝐵 } ( 𝑦𝑥 ) ) )