| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmeq |
⊢ ( 𝑦 = 𝐴 → dom 𝑦 = dom 𝐴 ) |
| 2 |
|
dmeq |
⊢ ( 𝑦 = 𝐵 → dom 𝑦 = dom 𝐵 ) |
| 3 |
1 2
|
iinxprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∩ 𝑦 ∈ { 𝐴 , 𝐵 } dom 𝑦 = ( dom 𝐴 ∩ dom 𝐵 ) ) |
| 4 |
|
fveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
| 5 |
|
fveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 6 |
4 5
|
iinxprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∩ 𝑦 ∈ { 𝐴 , 𝐵 } ( 𝑦 ‘ 𝑥 ) = ( ( 𝐴 ‘ 𝑥 ) ∩ ( 𝐵 ‘ 𝑥 ) ) ) |
| 7 |
3 6
|
mpteq12dv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ ∩ 𝑦 ∈ { 𝐴 , 𝐵 } dom 𝑦 ↦ ∩ 𝑦 ∈ { 𝐴 , 𝐵 } ( 𝑦 ‘ 𝑥 ) ) = ( 𝑥 ∈ ( dom 𝐴 ∩ dom 𝐵 ) ↦ ( ( 𝐴 ‘ 𝑥 ) ∩ ( 𝐵 ‘ 𝑥 ) ) ) ) |
| 8 |
7
|
eqcomd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ ( dom 𝐴 ∩ dom 𝐵 ) ↦ ( ( 𝐴 ‘ 𝑥 ) ∩ ( 𝐵 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ∩ 𝑦 ∈ { 𝐴 , 𝐵 } dom 𝑦 ↦ ∩ 𝑦 ∈ { 𝐴 , 𝐵 } ( 𝑦 ‘ 𝑥 ) ) ) |