| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prnzg |
⊢ ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) → { 𝐴 , 𝐵 } ≠ ∅ ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) → { 𝐴 , 𝐵 } ≠ ∅ ) |
| 3 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) → 𝐴 ∈ ( Subcat ‘ 𝐶 ) ) |
| 4 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ ( Subcat ‘ 𝐶 ) ↔ 𝐴 ∈ ( Subcat ‘ 𝐶 ) ) ) |
| 5 |
3 4
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) → ( 𝑦 = 𝐴 → 𝑦 ∈ ( Subcat ‘ 𝐶 ) ) ) |
| 6 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) → 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) |
| 7 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ ( Subcat ‘ 𝐶 ) ↔ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) ) |
| 8 |
6 7
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) → ( 𝑦 = 𝐵 → 𝑦 ∈ ( Subcat ‘ 𝐶 ) ) ) |
| 9 |
|
elpri |
⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 } → ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) |
| 10 |
9
|
adantl |
⊢ ( ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) → ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) |
| 11 |
5 8 10
|
mpjaod |
⊢ ( ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) → 𝑦 ∈ ( Subcat ‘ 𝐶 ) ) |
| 12 |
|
iinfprg |
⊢ ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) → ( 𝑥 ∈ ( dom 𝐴 ∩ dom 𝐵 ) ↦ ( ( 𝐴 ‘ 𝑥 ) ∩ ( 𝐵 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ∩ 𝑦 ∈ { 𝐴 , 𝐵 } dom 𝑦 ↦ ∩ 𝑦 ∈ { 𝐴 , 𝐵 } ( 𝑦 ‘ 𝑥 ) ) ) |
| 13 |
2 11 12
|
iinfsubc |
⊢ ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) → ( 𝑥 ∈ ( dom 𝐴 ∩ dom 𝐵 ) ↦ ( ( 𝐴 ‘ 𝑥 ) ∩ ( 𝐵 ‘ 𝑥 ) ) ) ∈ ( Subcat ‘ 𝐶 ) ) |