| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prnzg |
⊢ ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) → { 𝐴 , 𝐵 } ≠ ∅ ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) → { 𝐴 , 𝐵 } ≠ ∅ ) |
| 3 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) ∧ 𝑤 ∈ { 𝐴 , 𝐵 } ) → 𝐴 ∈ ( Subcat ‘ 𝐶 ) ) |
| 4 |
|
eqid |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
| 5 |
3 4
|
subcssc |
⊢ ( ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) ∧ 𝑤 ∈ { 𝐴 , 𝐵 } ) → 𝐴 ⊆cat ( Homf ‘ 𝐶 ) ) |
| 6 |
|
breq1 |
⊢ ( 𝑤 = 𝐴 → ( 𝑤 ⊆cat ( Homf ‘ 𝐶 ) ↔ 𝐴 ⊆cat ( Homf ‘ 𝐶 ) ) ) |
| 7 |
5 6
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) ∧ 𝑤 ∈ { 𝐴 , 𝐵 } ) → ( 𝑤 = 𝐴 → 𝑤 ⊆cat ( Homf ‘ 𝐶 ) ) ) |
| 8 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) ∧ 𝑤 ∈ { 𝐴 , 𝐵 } ) → 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) |
| 9 |
8 4
|
subcssc |
⊢ ( ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) ∧ 𝑤 ∈ { 𝐴 , 𝐵 } ) → 𝐵 ⊆cat ( Homf ‘ 𝐶 ) ) |
| 10 |
|
breq1 |
⊢ ( 𝑤 = 𝐵 → ( 𝑤 ⊆cat ( Homf ‘ 𝐶 ) ↔ 𝐵 ⊆cat ( Homf ‘ 𝐶 ) ) ) |
| 11 |
9 10
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) ∧ 𝑤 ∈ { 𝐴 , 𝐵 } ) → ( 𝑤 = 𝐵 → 𝑤 ⊆cat ( Homf ‘ 𝐶 ) ) ) |
| 12 |
|
elpri |
⊢ ( 𝑤 ∈ { 𝐴 , 𝐵 } → ( 𝑤 = 𝐴 ∨ 𝑤 = 𝐵 ) ) |
| 13 |
12
|
adantl |
⊢ ( ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) ∧ 𝑤 ∈ { 𝐴 , 𝐵 } ) → ( 𝑤 = 𝐴 ∨ 𝑤 = 𝐵 ) ) |
| 14 |
7 11 13
|
mpjaod |
⊢ ( ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) ∧ 𝑤 ∈ { 𝐴 , 𝐵 } ) → 𝑤 ⊆cat ( Homf ‘ 𝐶 ) ) |
| 15 |
|
iinfprg |
⊢ ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) → ( 𝑧 ∈ ( dom 𝐴 ∩ dom 𝐵 ) ↦ ( ( 𝐴 ‘ 𝑧 ) ∩ ( 𝐵 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ∩ 𝑤 ∈ { 𝐴 , 𝐵 } dom 𝑤 ↦ ∩ 𝑤 ∈ { 𝐴 , 𝐵 } ( 𝑤 ‘ 𝑧 ) ) ) |
| 16 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) ∧ 𝑤 ∈ { 𝐴 , 𝐵 } ) → dom dom 𝑤 = dom dom 𝑤 ) |
| 17 |
|
nfv |
⊢ Ⅎ 𝑤 ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) |
| 18 |
2 14 15 16 17
|
iinfssclem1 |
⊢ ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) → ( 𝑧 ∈ ( dom 𝐴 ∩ dom 𝐵 ) ↦ ( ( 𝐴 ‘ 𝑧 ) ∩ ( 𝐵 ‘ 𝑧 ) ) ) = ( 𝑥 ∈ ∩ 𝑤 ∈ { 𝐴 , 𝐵 } dom dom 𝑤 , 𝑦 ∈ ∩ 𝑤 ∈ { 𝐴 , 𝐵 } dom dom 𝑤 ↦ ∩ 𝑤 ∈ { 𝐴 , 𝐵 } ( 𝑥 𝑤 𝑦 ) ) ) |
| 19 |
|
dmeq |
⊢ ( 𝑤 = 𝐴 → dom 𝑤 = dom 𝐴 ) |
| 20 |
19
|
dmeqd |
⊢ ( 𝑤 = 𝐴 → dom dom 𝑤 = dom dom 𝐴 ) |
| 21 |
|
dmeq |
⊢ ( 𝑤 = 𝐵 → dom 𝑤 = dom 𝐵 ) |
| 22 |
21
|
dmeqd |
⊢ ( 𝑤 = 𝐵 → dom dom 𝑤 = dom dom 𝐵 ) |
| 23 |
20 22
|
iinxprg |
⊢ ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) → ∩ 𝑤 ∈ { 𝐴 , 𝐵 } dom dom 𝑤 = ( dom dom 𝐴 ∩ dom dom 𝐵 ) ) |
| 24 |
|
oveq |
⊢ ( 𝑤 = 𝐴 → ( 𝑥 𝑤 𝑦 ) = ( 𝑥 𝐴 𝑦 ) ) |
| 25 |
|
oveq |
⊢ ( 𝑤 = 𝐵 → ( 𝑥 𝑤 𝑦 ) = ( 𝑥 𝐵 𝑦 ) ) |
| 26 |
24 25
|
iinxprg |
⊢ ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) → ∩ 𝑤 ∈ { 𝐴 , 𝐵 } ( 𝑥 𝑤 𝑦 ) = ( ( 𝑥 𝐴 𝑦 ) ∩ ( 𝑥 𝐵 𝑦 ) ) ) |
| 27 |
23 23 26
|
mpoeq123dv |
⊢ ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) → ( 𝑥 ∈ ∩ 𝑤 ∈ { 𝐴 , 𝐵 } dom dom 𝑤 , 𝑦 ∈ ∩ 𝑤 ∈ { 𝐴 , 𝐵 } dom dom 𝑤 ↦ ∩ 𝑤 ∈ { 𝐴 , 𝐵 } ( 𝑥 𝑤 𝑦 ) ) = ( 𝑥 ∈ ( dom dom 𝐴 ∩ dom dom 𝐵 ) , 𝑦 ∈ ( dom dom 𝐴 ∩ dom dom 𝐵 ) ↦ ( ( 𝑥 𝐴 𝑦 ) ∩ ( 𝑥 𝐵 𝑦 ) ) ) ) |
| 28 |
18 27
|
eqtrd |
⊢ ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) → ( 𝑧 ∈ ( dom 𝐴 ∩ dom 𝐵 ) ↦ ( ( 𝐴 ‘ 𝑧 ) ∩ ( 𝐵 ‘ 𝑧 ) ) ) = ( 𝑥 ∈ ( dom dom 𝐴 ∩ dom dom 𝐵 ) , 𝑦 ∈ ( dom dom 𝐴 ∩ dom dom 𝐵 ) ↦ ( ( 𝑥 𝐴 𝑦 ) ∩ ( 𝑥 𝐵 𝑦 ) ) ) ) |
| 29 |
|
infsubc |
⊢ ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) → ( 𝑧 ∈ ( dom 𝐴 ∩ dom 𝐵 ) ↦ ( ( 𝐴 ‘ 𝑧 ) ∩ ( 𝐵 ‘ 𝑧 ) ) ) ∈ ( Subcat ‘ 𝐶 ) ) |
| 30 |
28 29
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐵 ∈ ( Subcat ‘ 𝐶 ) ) → ( 𝑥 ∈ ( dom dom 𝐴 ∩ dom dom 𝐵 ) , 𝑦 ∈ ( dom dom 𝐴 ∩ dom dom 𝐵 ) ↦ ( ( 𝑥 𝐴 𝑦 ) ∩ ( 𝑥 𝐵 𝑦 ) ) ) ∈ ( Subcat ‘ 𝐶 ) ) |