| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prnzg |
|- ( A e. ( Subcat ` C ) -> { A , B } =/= (/) ) |
| 2 |
1
|
adantr |
|- ( ( A e. ( Subcat ` C ) /\ B e. ( Subcat ` C ) ) -> { A , B } =/= (/) ) |
| 3 |
|
simpll |
|- ( ( ( A e. ( Subcat ` C ) /\ B e. ( Subcat ` C ) ) /\ w e. { A , B } ) -> A e. ( Subcat ` C ) ) |
| 4 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
| 5 |
3 4
|
subcssc |
|- ( ( ( A e. ( Subcat ` C ) /\ B e. ( Subcat ` C ) ) /\ w e. { A , B } ) -> A C_cat ( Homf ` C ) ) |
| 6 |
|
breq1 |
|- ( w = A -> ( w C_cat ( Homf ` C ) <-> A C_cat ( Homf ` C ) ) ) |
| 7 |
5 6
|
syl5ibrcom |
|- ( ( ( A e. ( Subcat ` C ) /\ B e. ( Subcat ` C ) ) /\ w e. { A , B } ) -> ( w = A -> w C_cat ( Homf ` C ) ) ) |
| 8 |
|
simplr |
|- ( ( ( A e. ( Subcat ` C ) /\ B e. ( Subcat ` C ) ) /\ w e. { A , B } ) -> B e. ( Subcat ` C ) ) |
| 9 |
8 4
|
subcssc |
|- ( ( ( A e. ( Subcat ` C ) /\ B e. ( Subcat ` C ) ) /\ w e. { A , B } ) -> B C_cat ( Homf ` C ) ) |
| 10 |
|
breq1 |
|- ( w = B -> ( w C_cat ( Homf ` C ) <-> B C_cat ( Homf ` C ) ) ) |
| 11 |
9 10
|
syl5ibrcom |
|- ( ( ( A e. ( Subcat ` C ) /\ B e. ( Subcat ` C ) ) /\ w e. { A , B } ) -> ( w = B -> w C_cat ( Homf ` C ) ) ) |
| 12 |
|
elpri |
|- ( w e. { A , B } -> ( w = A \/ w = B ) ) |
| 13 |
12
|
adantl |
|- ( ( ( A e. ( Subcat ` C ) /\ B e. ( Subcat ` C ) ) /\ w e. { A , B } ) -> ( w = A \/ w = B ) ) |
| 14 |
7 11 13
|
mpjaod |
|- ( ( ( A e. ( Subcat ` C ) /\ B e. ( Subcat ` C ) ) /\ w e. { A , B } ) -> w C_cat ( Homf ` C ) ) |
| 15 |
|
iinfprg |
|- ( ( A e. ( Subcat ` C ) /\ B e. ( Subcat ` C ) ) -> ( z e. ( dom A i^i dom B ) |-> ( ( A ` z ) i^i ( B ` z ) ) ) = ( z e. |^|_ w e. { A , B } dom w |-> |^|_ w e. { A , B } ( w ` z ) ) ) |
| 16 |
|
eqidd |
|- ( ( ( A e. ( Subcat ` C ) /\ B e. ( Subcat ` C ) ) /\ w e. { A , B } ) -> dom dom w = dom dom w ) |
| 17 |
|
nfv |
|- F/ w ( A e. ( Subcat ` C ) /\ B e. ( Subcat ` C ) ) |
| 18 |
2 14 15 16 17
|
iinfssclem1 |
|- ( ( A e. ( Subcat ` C ) /\ B e. ( Subcat ` C ) ) -> ( z e. ( dom A i^i dom B ) |-> ( ( A ` z ) i^i ( B ` z ) ) ) = ( x e. |^|_ w e. { A , B } dom dom w , y e. |^|_ w e. { A , B } dom dom w |-> |^|_ w e. { A , B } ( x w y ) ) ) |
| 19 |
|
dmeq |
|- ( w = A -> dom w = dom A ) |
| 20 |
19
|
dmeqd |
|- ( w = A -> dom dom w = dom dom A ) |
| 21 |
|
dmeq |
|- ( w = B -> dom w = dom B ) |
| 22 |
21
|
dmeqd |
|- ( w = B -> dom dom w = dom dom B ) |
| 23 |
20 22
|
iinxprg |
|- ( ( A e. ( Subcat ` C ) /\ B e. ( Subcat ` C ) ) -> |^|_ w e. { A , B } dom dom w = ( dom dom A i^i dom dom B ) ) |
| 24 |
|
oveq |
|- ( w = A -> ( x w y ) = ( x A y ) ) |
| 25 |
|
oveq |
|- ( w = B -> ( x w y ) = ( x B y ) ) |
| 26 |
24 25
|
iinxprg |
|- ( ( A e. ( Subcat ` C ) /\ B e. ( Subcat ` C ) ) -> |^|_ w e. { A , B } ( x w y ) = ( ( x A y ) i^i ( x B y ) ) ) |
| 27 |
23 23 26
|
mpoeq123dv |
|- ( ( A e. ( Subcat ` C ) /\ B e. ( Subcat ` C ) ) -> ( x e. |^|_ w e. { A , B } dom dom w , y e. |^|_ w e. { A , B } dom dom w |-> |^|_ w e. { A , B } ( x w y ) ) = ( x e. ( dom dom A i^i dom dom B ) , y e. ( dom dom A i^i dom dom B ) |-> ( ( x A y ) i^i ( x B y ) ) ) ) |
| 28 |
18 27
|
eqtrd |
|- ( ( A e. ( Subcat ` C ) /\ B e. ( Subcat ` C ) ) -> ( z e. ( dom A i^i dom B ) |-> ( ( A ` z ) i^i ( B ` z ) ) ) = ( x e. ( dom dom A i^i dom dom B ) , y e. ( dom dom A i^i dom dom B ) |-> ( ( x A y ) i^i ( x B y ) ) ) ) |
| 29 |
|
infsubc |
|- ( ( A e. ( Subcat ` C ) /\ B e. ( Subcat ` C ) ) -> ( z e. ( dom A i^i dom B ) |-> ( ( A ` z ) i^i ( B ` z ) ) ) e. ( Subcat ` C ) ) |
| 30 |
28 29
|
eqeltrrd |
|- ( ( A e. ( Subcat ` C ) /\ B e. ( Subcat ` C ) ) -> ( x e. ( dom dom A i^i dom dom B ) , y e. ( dom dom A i^i dom dom B ) |-> ( ( x A y ) i^i ( x B y ) ) ) e. ( Subcat ` C ) ) |