Metamath Proof Explorer


Theorem infsubc2

Description: The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025)

Ref Expression
Assertion infsubc2 A Subcat C B Subcat C x dom dom A dom dom B , y dom dom A dom dom B x A y x B y Subcat C

Proof

Step Hyp Ref Expression
1 prnzg A Subcat C A B
2 1 adantr A Subcat C B Subcat C A B
3 simpll A Subcat C B Subcat C w A B A Subcat C
4 eqid Hom 𝑓 C = Hom 𝑓 C
5 3 4 subcssc A Subcat C B Subcat C w A B A cat Hom 𝑓 C
6 breq1 w = A w cat Hom 𝑓 C A cat Hom 𝑓 C
7 5 6 syl5ibrcom A Subcat C B Subcat C w A B w = A w cat Hom 𝑓 C
8 simplr A Subcat C B Subcat C w A B B Subcat C
9 8 4 subcssc A Subcat C B Subcat C w A B B cat Hom 𝑓 C
10 breq1 w = B w cat Hom 𝑓 C B cat Hom 𝑓 C
11 9 10 syl5ibrcom A Subcat C B Subcat C w A B w = B w cat Hom 𝑓 C
12 elpri w A B w = A w = B
13 12 adantl A Subcat C B Subcat C w A B w = A w = B
14 7 11 13 mpjaod A Subcat C B Subcat C w A B w cat Hom 𝑓 C
15 iinfprg A Subcat C B Subcat C z dom A dom B A z B z = z w A B dom w w A B w z
16 eqidd A Subcat C B Subcat C w A B dom dom w = dom dom w
17 nfv w A Subcat C B Subcat C
18 2 14 15 16 17 iinfssclem1 A Subcat C B Subcat C z dom A dom B A z B z = x w A B dom dom w , y w A B dom dom w w A B x w y
19 dmeq w = A dom w = dom A
20 19 dmeqd w = A dom dom w = dom dom A
21 dmeq w = B dom w = dom B
22 21 dmeqd w = B dom dom w = dom dom B
23 20 22 iinxprg A Subcat C B Subcat C w A B dom dom w = dom dom A dom dom B
24 oveq w = A x w y = x A y
25 oveq w = B x w y = x B y
26 24 25 iinxprg A Subcat C B Subcat C w A B x w y = x A y x B y
27 23 23 26 mpoeq123dv A Subcat C B Subcat C x w A B dom dom w , y w A B dom dom w w A B x w y = x dom dom A dom dom B , y dom dom A dom dom B x A y x B y
28 18 27 eqtrd A Subcat C B Subcat C z dom A dom B A z B z = x dom dom A dom dom B , y dom dom A dom dom B x A y x B y
29 infsubc A Subcat C B Subcat C z dom A dom B A z B z Subcat C
30 28 29 eqeltrrd A Subcat C B Subcat C x dom dom A dom dom B , y dom dom A dom dom B x A y x B y Subcat C