Metamath Proof Explorer


Theorem iinfssclem1

Description: Lemma for iinfssc . (Contributed by Zhi Wang, 31-Oct-2025)

Ref Expression
Hypotheses iinfssc.1 φ A
iinfssc.2 φ x A H cat J
iinfssc.3 φ K = y x A dom H x A H y
iinfssclem1.4 φ x A S = dom dom H
iinfssclem1.5 x φ
Assertion iinfssclem1 φ K = z x A S , w x A S x A z H w

Proof

Step Hyp Ref Expression
1 iinfssc.1 φ A
2 iinfssc.2 φ x A H cat J
3 iinfssc.3 φ K = y x A dom H x A H y
4 iinfssclem1.4 φ x A S = dom dom H
5 iinfssclem1.5 x φ
6 2 4 sscfn1 φ x A H Fn S × S
7 6 fndmd φ x A dom H = S × S
8 5 7 iineq2d φ x A dom H = x A S × S
9 iinxp A x A S × S = x A S × x A S
10 1 9 syl φ x A S × S = x A S × x A S
11 8 10 eqtrd φ x A dom H = x A S × x A S
12 11 mpteq1d φ y x A dom H x A H y = y x A S × x A S x A H y
13 3 12 eqtrd φ K = y x A S × x A S x A H y
14 fveq2 y = z w H y = H z w
15 df-ov z H w = H z w
16 14 15 eqtr4di y = z w H y = z H w
17 16 adantr y = z w x A H y = z H w
18 17 iineq2dv y = z w x A H y = x A z H w
19 18 mpompt y x A S × x A S x A H y = z x A S , w x A S x A z H w
20 13 19 eqtrdi φ K = z x A S , w x A S x A z H w