| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iinfssc.1 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 2 |
|
iinfssc.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐻 ⊆cat 𝐽 ) |
| 3 |
|
iinfssc.3 |
⊢ ( 𝜑 → 𝐾 = ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑦 ) ) ) |
| 4 |
|
iinfssclem1.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑆 = dom dom 𝐻 ) |
| 5 |
|
iinfssclem1.5 |
⊢ Ⅎ 𝑥 𝜑 |
| 6 |
2 4
|
sscfn1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
| 7 |
6
|
fndmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → dom 𝐻 = ( 𝑆 × 𝑆 ) ) |
| 8 |
5 7
|
iineq2d |
⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 dom 𝐻 = ∩ 𝑥 ∈ 𝐴 ( 𝑆 × 𝑆 ) ) |
| 9 |
|
iinxp |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 ( 𝑆 × 𝑆 ) = ( ∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆 ) ) |
| 10 |
1 9
|
syl |
⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 ( 𝑆 × 𝑆 ) = ( ∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆 ) ) |
| 11 |
8 10
|
eqtrd |
⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 dom 𝐻 = ( ∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆 ) ) |
| 12 |
11
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑦 ) ) = ( 𝑦 ∈ ( ∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆 ) ↦ ∩ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑦 ) ) ) |
| 13 |
3 12
|
eqtrd |
⊢ ( 𝜑 → 𝐾 = ( 𝑦 ∈ ( ∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆 ) ↦ ∩ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑦 ) ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 〈 𝑧 , 𝑤 〉 ) ) |
| 15 |
|
df-ov |
⊢ ( 𝑧 𝐻 𝑤 ) = ( 𝐻 ‘ 〈 𝑧 , 𝑤 〉 ) |
| 16 |
14 15
|
eqtr4di |
⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ( 𝐻 ‘ 𝑦 ) = ( 𝑧 𝐻 𝑤 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑦 = 〈 𝑧 , 𝑤 〉 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑦 ) = ( 𝑧 𝐻 𝑤 ) ) |
| 18 |
17
|
iineq2dv |
⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ∩ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑦 ) = ∩ 𝑥 ∈ 𝐴 ( 𝑧 𝐻 𝑤 ) ) |
| 19 |
18
|
mpompt |
⊢ ( 𝑦 ∈ ( ∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆 ) ↦ ∩ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑦 ) ) = ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 , 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 ( 𝑧 𝐻 𝑤 ) ) |
| 20 |
13 19
|
eqtrdi |
⊢ ( 𝜑 → 𝐾 = ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 , 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 ( 𝑧 𝐻 𝑤 ) ) ) |