Metamath Proof Explorer


Theorem iinfssclem1

Description: Lemma for iinfssc . (Contributed by Zhi Wang, 31-Oct-2025)

Ref Expression
Hypotheses iinfssc.1 ( 𝜑𝐴 ≠ ∅ )
iinfssc.2 ( ( 𝜑𝑥𝐴 ) → 𝐻cat 𝐽 )
iinfssc.3 ( 𝜑𝐾 = ( 𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 ( 𝐻𝑦 ) ) )
iinfssclem1.4 ( ( 𝜑𝑥𝐴 ) → 𝑆 = dom dom 𝐻 )
iinfssclem1.5 𝑥 𝜑
Assertion iinfssclem1 ( 𝜑𝐾 = ( 𝑧 𝑥𝐴 𝑆 , 𝑤 𝑥𝐴 𝑆 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ) )

Proof

Step Hyp Ref Expression
1 iinfssc.1 ( 𝜑𝐴 ≠ ∅ )
2 iinfssc.2 ( ( 𝜑𝑥𝐴 ) → 𝐻cat 𝐽 )
3 iinfssc.3 ( 𝜑𝐾 = ( 𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 ( 𝐻𝑦 ) ) )
4 iinfssclem1.4 ( ( 𝜑𝑥𝐴 ) → 𝑆 = dom dom 𝐻 )
5 iinfssclem1.5 𝑥 𝜑
6 2 4 sscfn1 ( ( 𝜑𝑥𝐴 ) → 𝐻 Fn ( 𝑆 × 𝑆 ) )
7 6 fndmd ( ( 𝜑𝑥𝐴 ) → dom 𝐻 = ( 𝑆 × 𝑆 ) )
8 5 7 iineq2d ( 𝜑 𝑥𝐴 dom 𝐻 = 𝑥𝐴 ( 𝑆 × 𝑆 ) )
9 iinxp ( 𝐴 ≠ ∅ → 𝑥𝐴 ( 𝑆 × 𝑆 ) = ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆 ) )
10 1 9 syl ( 𝜑 𝑥𝐴 ( 𝑆 × 𝑆 ) = ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆 ) )
11 8 10 eqtrd ( 𝜑 𝑥𝐴 dom 𝐻 = ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆 ) )
12 11 mpteq1d ( 𝜑 → ( 𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 ( 𝐻𝑦 ) ) = ( 𝑦 ∈ ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆 ) ↦ 𝑥𝐴 ( 𝐻𝑦 ) ) )
13 3 12 eqtrd ( 𝜑𝐾 = ( 𝑦 ∈ ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆 ) ↦ 𝑥𝐴 ( 𝐻𝑦 ) ) )
14 fveq2 ( 𝑦 = ⟨ 𝑧 , 𝑤 ⟩ → ( 𝐻𝑦 ) = ( 𝐻 ‘ ⟨ 𝑧 , 𝑤 ⟩ ) )
15 df-ov ( 𝑧 𝐻 𝑤 ) = ( 𝐻 ‘ ⟨ 𝑧 , 𝑤 ⟩ )
16 14 15 eqtr4di ( 𝑦 = ⟨ 𝑧 , 𝑤 ⟩ → ( 𝐻𝑦 ) = ( 𝑧 𝐻 𝑤 ) )
17 16 adantr ( ( 𝑦 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑥𝐴 ) → ( 𝐻𝑦 ) = ( 𝑧 𝐻 𝑤 ) )
18 17 iineq2dv ( 𝑦 = ⟨ 𝑧 , 𝑤 ⟩ → 𝑥𝐴 ( 𝐻𝑦 ) = 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) )
19 18 mpompt ( 𝑦 ∈ ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆 ) ↦ 𝑥𝐴 ( 𝐻𝑦 ) ) = ( 𝑧 𝑥𝐴 𝑆 , 𝑤 𝑥𝐴 𝑆 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) )
20 13 19 eqtrdi ( 𝜑𝐾 = ( 𝑧 𝑥𝐴 𝑆 , 𝑤 𝑥𝐴 𝑆 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ) )