| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iinfssc.1 |
|- ( ph -> A =/= (/) ) |
| 2 |
|
iinfssc.2 |
|- ( ( ph /\ x e. A ) -> H C_cat J ) |
| 3 |
|
iinfssc.3 |
|- ( ph -> K = ( y e. |^|_ x e. A dom H |-> |^|_ x e. A ( H ` y ) ) ) |
| 4 |
|
iinfssclem1.4 |
|- ( ( ph /\ x e. A ) -> S = dom dom H ) |
| 5 |
|
iinfssclem1.5 |
|- F/ x ph |
| 6 |
2 4
|
sscfn1 |
|- ( ( ph /\ x e. A ) -> H Fn ( S X. S ) ) |
| 7 |
6
|
fndmd |
|- ( ( ph /\ x e. A ) -> dom H = ( S X. S ) ) |
| 8 |
5 7
|
iineq2d |
|- ( ph -> |^|_ x e. A dom H = |^|_ x e. A ( S X. S ) ) |
| 9 |
|
iinxp |
|- ( A =/= (/) -> |^|_ x e. A ( S X. S ) = ( |^|_ x e. A S X. |^|_ x e. A S ) ) |
| 10 |
1 9
|
syl |
|- ( ph -> |^|_ x e. A ( S X. S ) = ( |^|_ x e. A S X. |^|_ x e. A S ) ) |
| 11 |
8 10
|
eqtrd |
|- ( ph -> |^|_ x e. A dom H = ( |^|_ x e. A S X. |^|_ x e. A S ) ) |
| 12 |
11
|
mpteq1d |
|- ( ph -> ( y e. |^|_ x e. A dom H |-> |^|_ x e. A ( H ` y ) ) = ( y e. ( |^|_ x e. A S X. |^|_ x e. A S ) |-> |^|_ x e. A ( H ` y ) ) ) |
| 13 |
3 12
|
eqtrd |
|- ( ph -> K = ( y e. ( |^|_ x e. A S X. |^|_ x e. A S ) |-> |^|_ x e. A ( H ` y ) ) ) |
| 14 |
|
fveq2 |
|- ( y = <. z , w >. -> ( H ` y ) = ( H ` <. z , w >. ) ) |
| 15 |
|
df-ov |
|- ( z H w ) = ( H ` <. z , w >. ) |
| 16 |
14 15
|
eqtr4di |
|- ( y = <. z , w >. -> ( H ` y ) = ( z H w ) ) |
| 17 |
16
|
adantr |
|- ( ( y = <. z , w >. /\ x e. A ) -> ( H ` y ) = ( z H w ) ) |
| 18 |
17
|
iineq2dv |
|- ( y = <. z , w >. -> |^|_ x e. A ( H ` y ) = |^|_ x e. A ( z H w ) ) |
| 19 |
18
|
mpompt |
|- ( y e. ( |^|_ x e. A S X. |^|_ x e. A S ) |-> |^|_ x e. A ( H ` y ) ) = ( z e. |^|_ x e. A S , w e. |^|_ x e. A S |-> |^|_ x e. A ( z H w ) ) |
| 20 |
13 19
|
eqtrdi |
|- ( ph -> K = ( z e. |^|_ x e. A S , w e. |^|_ x e. A S |-> |^|_ x e. A ( z H w ) ) ) |