Description: Equality deduction for indexed intersection. (Contributed by NM, 7-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iineq2d.1 | |- F/ x ph | |
| iineq2d.2 | |- ( ( ph /\ x e. A ) -> B = C ) | ||
| Assertion | iineq2d | |- ( ph -> |^|_ x e. A B = |^|_ x e. A C ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iineq2d.1 | |- F/ x ph | |
| 2 | iineq2d.2 | |- ( ( ph /\ x e. A ) -> B = C ) | |
| 3 | 2 | ex | |- ( ph -> ( x e. A -> B = C ) ) | 
| 4 | 1 3 | ralrimi | |- ( ph -> A. x e. A B = C ) | 
| 5 | iineq2 | |- ( A. x e. A B = C -> |^|_ x e. A B = |^|_ x e. A C ) | |
| 6 | 4 5 | syl | |- ( ph -> |^|_ x e. A B = |^|_ x e. A C ) |